Hackaday Editors Elliot Williams and Tom Nardi start this week’s episode off with an update on the rapidly approaching 2025 Supercon in Pasadena, California. From there they’ll talk about the surprisingly high-tech world of vapes, a flying DeLorean several years in the making, non-contact pulse monitoring, and the potential of backyard radio telescopes to do real astronomy. You’ll hear about a dodecahedron speaker, a page turning peripheral, and 3D printed tools for unfolding boxes. They’ll wrap things up by taking a look at the latest generation of wearable smart glasses, and wonder if putting a bank of batteries in your home is really with the hassle.
Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!
While many in the industry were at first skeptical of NASA’s goal to put resupply flights to the International Space Station in the hands of commercial operators, the results speak for themselves. Since 2012, the SpaceX Dragon family of spacecraft has been transporting crew and cargo from American soil to the orbiting laboratory, a capability that the space agency had lost with the retirement of the Space Shuttle. Putting these relatively routine missions in the hands of a commercial provider like SpaceX takes some of the logistical and financial burden off of NASA, allowing them to focus on more forward-looking projects.
SpaceX Dragon arriving at the ISS for the first time in 2012.
But as the saying goes, you should never put all of your eggs in one basket. As successful as SpaceX has been, there’s always a chance that some issue could temporarily ground either the Falcon 9 or the Dragon.
While Russia’s Progress and Soyuz vehicles would still be available in an emergency situation, it’s in everyone’s best interest that there be multiple backup vehicles that can bring critical supplies to the Station.
Which is precisely why several new or upgraded spacecraft, designed specifically for performing resupply missions to the ISS and any potential commercial successor, are coming online over the next few years.
As you might expect, the University of Puerto Rico at Arecibo has a fascination with radio signals from space. While doing research into the legendary “Wow! Signal” detected back in 1977, they realized that the burst was so strong that a small DIY radio telescope would be able to pick it up using modern software-defined radio (SDR) technology.
This realization gave birth to the Wow@Home project, an effort to document both the hardware and software necessary to pick up a Wow! class signal from your own backyard. The University reasons that if they can get a bunch of volunteers to build and operate these radio telescopes, the resulting data could help identify the source of the Wow! Signal — which they believe could be the result of some rare astrophysical event and not the product of Little Green Men.
Ultimately, this isn’t much different from many of the SDR-based homebrew radio telescopes we’ve covered over the years — get a dish, hook your RTL-SDR up to it, add in the appropriate filters and amplifiers, and point it to the sky. Technically, you’re now a radio astronomer. Congratulations. In this case, you don’t even have to figure out how to motorize your dish, as they recommend just pointing the antenna at a fixed position and let the rotation of the Earth to the work — a similar trick to how the legendary Arecibo Observatory itself worked.
The tricky part is collecting and analyzing what’s coming out of the receiver, and that’s where the team at Arecibo hope to make the most headway with their Wow@Home software. It also sounds like that’s where the work still needs to be done. The goal is to have a finished product in Python that can be deployed on the Raspberry Pi, which as an added bonus will “generate a live preview of the data in the style of the original Ohio State SETI project printouts.” Sounds cool to us.
If you’re interested in lending a hand, the team says they’re open to contributions from the community — specifically from those with experience RFI shielding, software GUIs, and general software development. We love seeing citizen science, so hopefully this project finds the assistance and the community it needs to flourish.
For nearly 90 years, American Science and Surplus has been shipping out weird and wonderful stuff to customers far and wide. In the pre-Internet days, getting their latest catalog in the mail — notable for its hand-drawn illustrations and whimsical style — was always exciting. From Romanian gas masks to odd-ball components, there was no telling what new wonders each issue would bring. In time, the printed catalog gave way to a website, but the eclectic offerings and hand-drawn images remained.
Unfortunately, those days are officially no more. Earlier this week, American Science and Surplus had to make the difficult decision to shutter their entire mail order division. It’s no secret that the company as a whole had been struggling over the last few years. Like many small businesses they were hit hard during the COVID-19 years, and while they made it through that particular storm, they faced skyrocketing operational costs.
Earlier this year, the company turned to crowd funding to help stay afloat. That they were able to raise almost $200,000 speaks to how much support they had from their community of customers, but while it put the company in a better position, the writing was on the wall. The warehouse space required to support their mail order operations was simply too expensive to remain viable.
But it’s not all bad news. At least two of the company’s physical storefronts, located in Milwaukee, Wisconsin and Geneva, Illinois will remain open and operate under the ownership of the employees themselves. The fate of the third store in Park Ridge, Illinois is less clear. They currently don’t have a buyer, but it sounds like they haven’t given up hope of selling it yet.
Anyone in the Illinois area feel like getting some buddies together and buying a turn-key surplus business?
The modern hacker and maker has an incredible array of tools at their disposal — even a modestly appointed workbench these days would have seemed like science-fiction a couple decades ago. Desktop 3D printers, laser cutters, CNC mills, lathes, the list goes on and on. But what good is all that fancy gear if you don’t put it to work once and awhile?
If we had to guess, we’d say dust never gets a chance to accumulate on any of the tools in [Ed Nisley]’s workshop. According to his blog, the prolific hacker is either building or repairing something on a nearly daily basis. All of his posts are worth reading, but the multifaceted rebuilding of a Anker LC-40 flashlight from a couple months back recently caught our eye.
The International Space Station has been in orbit around the Earth, at least in some form, since November of 1998 — but not without help. In the vacuum of space, an object in orbit can generally be counted on to remain zipping around more or less forever, but the Station is low enough to experience a bit of atmospheric drag. It isn’t much, but it saps enough velocity from the Station that without regular “reboosts” to speed it back up , the orbiting complex would eventually come crashing down.
Naturally, the United States and Russia were aware of this when they set out to assemble the Station. That’s why early core modules such as Zarya and Zvezda came equipped with thrusters that could be used to not only rotate the complex about all axes, but accelerate it to counteract the impact of drag. Eventually the thrusters on Zarya were disabled, and its propellant tanks were plumbed into Zvezda’s fuel system to provide additional capacity.
An early image of ISS, Zarya module in center and Zvezda at far right.
But while the thrusters on Zvezda are still available for use, it turns out there’s an easier way to accelerate the Station; visiting spacecraft can literally push the orbital complex with their own maneuvering thrusters. Of course this is somewhat easier said than done, and not all vehicles have been able to accomplish the feat, but over the decades several craft have taken on the burden of lifting the ISS into a higher orbit.
Earlier this month, a specially modified SpaceX Cargo Dragon became the newest addition to the list of spacecraft that can perform a reboost. The craft will boost the Station several times over the rest of the year, which will provide valuable data for when it comes time to reverse the process and de-orbit the ISS in the future.
The Estes line of flying model rockets have inspired an untold number of children and adults alike, thanks in part to their simplicity. From the design and construction of the rockets themselves to the reliability and safety of the modular solid-propellant motors, the company managed to turn actual rocket science into a family activity. If you could glue fins onto a cardboard tube and stick a plastic nosecone on the end, you were nearly ready for launch.
But what if you’re looking for something a bit more challenging? That’s where the new Estes Scorpio 3D comes in. Unlike the classic Estes kit, which included the fins, nosecone, and other miscellaneous bits of the rocket, the Scorpio kit requires you to 3D print your own parts. Do it right, and the company says you can send your creation to heights of 1,000 feet (305 m).