BhangmeterV2 Answers The Question “Has A Nuke Gone Off?”

You might think that a nuclear explosion is not something you need a detector for, but clearly not everyone agrees. [Bigcrimping] has not only built one, the BhangmeterV2, but he has its output publicly posted at hasanukegoneoff.com, in case you can’t go through your day without checking if someone has nuked Wiltshire.

The Bhangmeter is based on an off-the-shelf “nuclear event detector”, the HSN-1000L by Power Device Corporation.

The HSN 1000 Nuclear Event Detector at the heart of the build. We didn’t know this thing existed, never mind that it was still available.

Interfacing to the HSN-1000L is very easy: you give it power, and it gives you a pin that stays HIGH unless it detects the characteristic gamma ray pulse of a nuclear event. The gamma ray pulse occurs at the beginning of a “nuclear event” precedes the EMP by some microseconds, and the blast wave by perhaps many seconds, so the HSN-1000 series seems be aimed at triggering an automatic shutdown that might help preserve electronics in the event of a nuclear exchange.

[Bigcrimping] has wired the HSN-1000L to a Raspberry Pi Pico 2 W to create the BhangmeterV2. In the event of a nuclear explosion, it will log the time the nuclear event detector’s pin goes low, and the JSON log is pushed to the cloud, hopefully to a remote server that won’t be vaporized or bricked-by-EMP along with the BhangmeterV2. Since it is only detecting the gamma ray pulse, the BhangmeterV2 is only sensitive to nuclear events within line-of-sight, which is really not where you want to be relative to a nuclear event. Perhaps V3 will include other detection methods– maybe even a 3D-printed neutrino detector?

If you survive the blast this project is designed to detect, you might need a radiation detector to deal with the fallout. For identifying exactly what radionuclide contamination is present, you might want a gamma-ray spectrometer.

It’s a sad comment on the modern world that this hack feels both cold-war vintage and relevant again today. Thanks to [Tom] for the tip; if you have any projects you want to share, we’d love to hear from you whether they’d help us survive nuclear war or not.

The Most Trustworthy USB-C Cable Is DIY

We like USB-C here at Hackaday, but like all specifications it is up to manufacturers to follow it and sometimes… they don’t. Sick of commercial cables either don’t label their safe wattage, or straight up lie about it, [GreatScott!] decided to DIY his own ultimate USB-C-PD cable for faster charging in his latest video, which is embedded below.

It’s a very quick project that uses off-the-shelf parts from Aliexpress: the silicone-insulated cable, the USB-C plugs (one with the all-important identifier chip), and the end shells. The end result is a bit more expensive than a cable from Aliexpress, but it is a lot more trustworthy. Unlike the random cable from Aliexpress, [GreatScott!] can be sure his has enough copper in it to handle the 240W it is designed for. It should also work nicely with USB PPS, which he clued us into a while back. While [GreatScott!] was focusing here on making a power cable, he did hook up the low-speed data lines, giving him a trustworthy USB2.0 connection.

This isn’t the first time we’ve seen someone test USB gear and find it wanting, though the problem may have improved in the last few years. Nowadays it’s the data cables you cannot trust, so maybe rolling your own data cables will make a comeback. (Which would at least be less tedious than than DB-25 was back in the day. Anyone else remember doing that?) USB-C can get pretty complicated when it comes to all its data modes, but we have an explainer to get you started on that. Continue reading “The Most Trustworthy USB-C Cable Is DIY”

Dead Amstrad Becomes Something New

When you run into old hardware you cannot restore, what do you do? Toss it? Sell it for parts? If you’re [TME Retro], you hide a high-end mini PC inside an Amstrad-shaped sleeper build.

The donorĀ  laptop is an Amstrad ALT-286 with glorious 80s styling that [TME Retro] tried to save in a previous video. Even with help from the community there was no saving this unit, so we can put away the pitchforks and torches. This restomod is perhaps the best afterlife the old Amstrad could have hoped for.

At first [TME Retro] was going to try and fit an iPad Pro screen, but it turned out those don’t have the driver-board ecosystem the smaller iPads do, so he went with a non-retina LCD panel from Amazon instead. Shoving an LCD where an LCD used to live and sticking an expensive mini-PC inside a bulky 80s case is not the most inspiring of hacks, but that’s not all [TME Retro] did.

Continue reading “Dead Amstrad Becomes Something New”

Robot Dinosaur YOLOs Colors And Shapes For Kids

YOLO can mean many things, but in the context of [be_riddickulous]’s AI Talking Robot Dinosaur it refers to the “You Only Look Once” YOLOv11 object-detection algorithm by Ultralytics, the method by which this adorable dino recognizes colors and shapes to teach them to children.

If you’re new to using YOLO or object recognition more generally, [be_riddiculous]’s tutorial is not a bad place to get started. She goes through how many images you’ll need and what types to get the shape-and-color recognition needed for this project, as well as how to annotate them and train the model, either locally or in the cloud.

The project itself is an adorable paper-mache dinosaur with a servo-actuated mouth hiding some LEDs and a Raspberry Pi camera module to provide images. In operation, the dinosaur “talks” to children using pre-recorded voice lines, inviting them to play a game and put a specific shape, or shape of a specific color (or both) in its mouth. Then the aforementioned object detection (running on a laptop) goes “YOLO” and identifies the shape so the toy can provide feedback on the child’s choice via a speaker in the belly of the beast.

The link to the game code is currently not valid, but it looks like they used PyGame for the audio output code. A servo motor controls the mouth, but without that code it’s not entirely clear to us what it’s doing. We expect by the time you read this there’s good odds [be_riddickulous] will have fixed that link and you can see for yourself.

The only thing that holds this back from being a great toy to put in every Kindergarten class is the need to have a laptop close by to plug the webcam into. A Raspberry Pi 5 ought to have the horsepower to run YOLOv11, so with a little extra effort the whole thing could be standalone — there might even be room in there for batteries.We’ve had other hacks aimed at little ones, like a kid-friendly computer to relive the glory days of the school computer lab or one of the many iterations of the RFID jukebox idea. If you want to wow the kiddos with AI, perhaps take a look at this talking Santa plush.

Got a cool project, AI, kid-related, or otherwise? Don’t forget to toss us a tip!

This Thermochromic Clock Is A Ray Of Sunshine

It’s never a bad time to look at a clock, and one could certainly do worse than this delightful Paper Sunshine Clock by [anneosaur]. The sun-ray display is an interesting take on the analog clock, and its method of operation is not one we see every day, either.

Reading the clock is straightforward: there are twelve rays divided into two segments. Once you figure out that this artful object is a clock, it’s easy enough to guess that the rays give the hours, and half-rays are half-hours. In the photo above, it’s sometime between nine o’clock and nine thirty. Our Swiss readers might not be terribly impressed, but a “fuzzy” clock like this is quite good enough much of the time for many people.

Even the flex PCB holding the resistors looks like a work of art.

The title gives away its method of operation: it’s thermochromic paint! The paint is printed onto a piece of Japanese awagami paper, which is pressed against a flexible PCB holding an array of resistors. Large copper pads act as heat spreaders for the resistors. For timekeeping and control, an Atmega328PB is paired with a DS3231MZ RTC, with a coin cell for backup power when the unit is unplugged. (When plugged in, the unit uses USB-C, as all things should.) That’s probably overkill for a +/-30 minute display, but we’re not complaining.

The Atmega328PB does not have quite enough outputs to drive all those resistors, so a multiplexing circuit is used to let the 10 available GIPO control current to 24 rays. Everything is fused for safety, and [anneosaur] even includes a temperature sensor on the control board. The resistors are driven by a temperature-compensated PWM signal to keep them from overheating or warming up too slowly, regardless of room temperature. The attention to detail here is as impressive as the aesthetics.

[annenosaur] has even thought of those poor people for whom such a fuzzy clock would never do (be they Swiss or otherwise) — the Paper Sunshine Clock has a lovely “sparkle mode” that turns the rays on and off at random, turning the clock into an art piece. A demo video of that is below. If you find this clock to be a ray of sunshine, everything you need to reproduce it is on GitHub under an MIT or CC4.0 license.

This is not the first thermochromic clock we’ve featured, though the last one was numeric. If you must have minute accuracy in a thermochromic analog clock, we’ve got you covered there, too.

Special thanks to [anneosaur] for submitting the hack. If you’ve seen (or made) a neat clock, let us know! You won’t catch us at a bad time; it’s always clock time at Hackaday.

 

Electromechanical Atari Is A Steampunk Meccano Masterpiece

If William Gibson and Bruce Sterling had written an arcade scene into “The Difference Engine”, it probably would have looked a lot like [Pete Wood]’s Meccano Martian Mission, as illustrated in the video below by the [London Meccano Club]. Meccano Martian Mission is an homage to Atari’s 1978 Lunar Lander video game, but entirely electromechanical and made of– you guessed it– Meccano.

Continue reading “Electromechanical Atari Is A Steampunk Meccano Masterpiece”

Smart Lamp Keeps Students On Track With Image Recognition

It’s a common enough problem: you’re hitting the books, your phone dings with a notification, and suddenly it’s three hours later. While you’ve done lots of scrolling, you didn’t do any studying. If only there were a quick, easy project that would keep an eye on you and provide a subtle nudge to get you off the phone. [Makestreme] has that project, an AI study lamp that shifts from warm white to an angry red to remind students to get back to work. See it in action in the demo video below.

Continue reading “Smart Lamp Keeps Students On Track With Image Recognition”