DIY Handheld Is An Emulation Powerhouse

If you’re into handheld gaming, you’ve got a wide array of hardware options to choose from these days that are capable of running everything from console classics to full-fledged PC titles. But that doesn’t mean there aren’t enterprising gamers out there who are still building their own custom handhelds —  like the Retro Lite CM5.

For this project, [StonedEdge], [GinKage], and [notime2d8] set out to create a powerful enough handheld that could emulate games spanning the PlayStation 2, GameCube, and 3DS eras. Using a Radxa Rk3588s compute module as a base, the build navigates the design and construction of things like the carrier board, custom controllers, and the enclosure.

Continue reading “DIY Handheld Is An Emulation Powerhouse”

Motorized Coil Tunes Your Ham Antenna On A Budget

When it comes to amateur radio, one size definitely does not fit all. That’s especially true with antennas, which need to be just the right size for the band you’re working, lest Very Bad Things happen to your expensive radio. That presents a problem for the ham who wants the option to work whichever band is active, and doubly so if portable operation is desired.

Of course, there are commercial solutions to this problem, but they tend to be expensive. Luckily [Øystein (LB8IJ)] seems to have found a way around that with this low-cost homebrew motorized antenna coil, which is compatible with the Yaesu Automatic Tuning Antenna System. ATAS is supported by several Yaesu transceivers, including the FT-891 which [Øystein] favors for field operations. ATAS sends signals up the feedline to a compatible antenna, which then moves a wiper along a coil to change the electrical length of the antenna, allowing it to resonate on the radio’s current frequency.

The video below details [Øystein]’s implementation of an ATAS-compatible tuning coil, mainly focusing on the mechanical and electrical aspects of the coil itself, which takes up most of the room inside a 50-mm diameter PVC tube. The bore of the air-core coil has a channel that guides a wiper, which moves along the length of the coil thanks to a motor-driven lead screw. [Øystein] put a lot of work into the wiper, to make it both mechanically and electrically robust. He also provides limit switches to make sure the mechanism isn’t over-driven.

There’s not much detail yet on how the control signals are detected, but a future video on that subject is promised. We’re looking forward to that, but in the meantime, the second video below shows [Øystein] using the tuner in the field, with great results.

Continue reading “Motorized Coil Tunes Your Ham Antenna On A Budget”

A Look Inside A Modern Mixed Signal Oscilloscope

High-speed bench equipment has become so much more affordable in the last decade that naturally one wonders what has made that possible. A great source of answers is a teardown by users like [kerry wong] who are kind enough to take apart their MSO2304X 300MHz osilloscope for our viewing pleasure.

The posted teardown video shows the guts of the scope without enclosure, heatsinks and shields that reveal a handful of boards that execute the functions nicely. The motherboard uses the Xilinx KINTEX-7 FPGA that is expected to run core processes such as signal processing as well as managing the sample storage on the paired DDR3 memory.

The analog front-end here is a bit of a surprise as it sports TI’s ADC08D1000 ADCs that are capable of 1.3 GSPS but the scope is advertised to be capable of more. The inferred design is that all four ADCs are being operated in an interleaved symphony to achieve 5 GSPS. Testing confirms that each input uses two ADCs at a time and when two or more channels are employed, the reconstruction quality drops.

Continue reading “A Look Inside A Modern Mixed Signal Oscilloscope”

desk with circuit schema and AirTag

Stealth AirTag Broadcasts When Moved: An Experiment

A simple yet intriguing idea is worth sharing, even if it wasn’t a flawless success: it can inspire others. [Richard]’s experiment with a motion-powered AirTag fits this bill. Starting with our call for simple projects, [Richard] came up with a circuit that selectively powers an AirTag based on movement. His concept was to use an inertial measurement unit (IMU) and a microcontroller to switch the AirTag on only when it’s on the move, creating a stealthy and battery-efficient tracker.

The setup is minimal: an ESP32 microcontroller, an MPU-6050 IMU, a transistor, and some breadboard magic. [Richard] demonstrates the concept using a clone AirTag due to concerns about soldering leads onto a genuine one. The breadboard-powered clone chirps to life when movement is detected, but that’s where challenges arise. For one, Apple AirTags are notoriously picky about batteries—a lesson learned when Duracell’s bitter coating blocks functionality. And while the prototype works initially, an unfortunate soldering mishap sadly sends the experiment off the rails.

Despite the setbacks, this project may spark a discussion on the possibilities of DIY digital camouflage for Bluetooth trackers. By powering up only when needed, such a device avoids constant broadcasting, making it harder to detect or block. Whether for tracking stolen vehicles or low-profile uses, it’s a concept rich with potential. We talked about this back in 2022, and there’s an interesting 38C3 talk that sheds quite some light on the broadcasting protocols and standards. Continue reading “Stealth AirTag Broadcasts When Moved: An Experiment”

img showing terminal and pico

I3C Bit-banging Fun For The RP2040

The RP2040 has quickly become a hot favorite with tinkerers and makers since its release in early 2021. This is largely attributed to the low cost, fast GPIOs, and plethora of bus peripherals. [xyphro] has written the I3C Blaster firmware that helps turn the Raspberry Pi Pico into a USB to I3C converter.

The firmware is essentially a bit-bang wrapper and exposes an interactive shell with a generous command set. But it is a lot more than that. [xyphro] has taken the time to dive into the I3C implementation standard and the code is a fairly complex state-machine that is a story on its own.

[xyphro] provides a Python script in case you feel like automating things or drawing up your GUI. And finally, if you are feeling adventurous, the I3C implementation is available for your project tinkering needs.

We loved the fact there is a branch project that lets you extend a Saleae Logic Analyzer to decode I3C and associated protocols by adding a Pico on the cheap. The last update to the project log shows the addition of a MIPI I3C High Data Rate Mode which operates at 25 Mbps which is right up the RP2040s.

[xyphro] gave us the Home Brew Version Of Smart Tweezers a decade ago and we expect there is more to come. If you are interested in reading more about the I3C bus, have a look at I3C — No Typo — Wants To Be Your Serial Bus.

Investigating USB-to-Ethernet Dongles With “Malware” Claims

Recently a video surfaced from someone claiming that certain USB-to-Ethernet dongles contained ‘malware’ among other big claims. Basically these dongles were said to be designed by China (and Russia) to spy on users and so on, but how much of this is actually grounded in reality? When [lcamtuf] dove into the topic, what he found was not so much a smoking gun, but rather a curious relic from the era when drivers-on-CD were being phased out.

The item that the video went bananas about was namely an additional SPI Flash chip on the PCB alongside the USB 2.0 – Ethernet IC, with many conspiracy theories being floated as to what it would be used for. After some digging, [lcamtuf] found that the IC used in these dongles (SR9900) is by a company called CoreChips Shenzhen, with a strong suggestions that it is a clone of the (2013-era) Realtek RTL8152B.

Both chips have an external SPI Flash option, which is used with the USB side to present a ‘virtual CD drive’ to the user when the dongle is plugged in. This was borne out with the SR9900 Windows system mass production tool that [lcamtuf] obtained a copy of. Included with the flashing tool is a 168 kB ISO image (containing the SR9900 driver package) which happily fits on the 512 kB Flash chip.

Although it’s always possible for chips and firmware to contain backdoors and malware, in this particular case it would appear to be that it’s merely a cruel reminder that 2013 is now already vanishing into the realm of ‘retro computing’ as us old fogies cling to our driver installation floppies and CDs.

Putting Cheap Motorcycle Tachometers To Work

With so much data being thrown at our eyeballs these days, it’s worryingly easy for the actually important stuff to slip by occasionally. So when [Liam Jackson] wanted a way to visualize the number of test failures popping up in the continuous integration system at work, he went with a novel but effective solution — universal motorcycle tachometers.

It turns out these little gauges can be had for under $10 a piece from the usual overseas retailers, and are very easy to drive with a microcontroller. As [Liam] explains, all you need to do other than providing them with 12 volts, is feed them a PWM signal. Even though the gauges are designed for a 12 V system, they apparently don’t have any problem responding to the 5 V logic level from the Arduino’s pins.

As for the frequency he says that 1,000 RPM corresponds to 16.66 Hz, so you can just multiply up from there to show whatever number you wish. That said, [Liam] warns that the gauges draw several hundred milliamps once the needle gets into the two digit range, so keep that in mind. Conveniently, those number happen to be in red anyway…

For his particular application, [Liam] put three of the gauges together to create a very handsome dashboard. If you want to recreate his setup exactly he’s made the STLs available for the gauge cluster housing. Note the small OLED at the center, this offers a way to show a bit more context than the three analog gauges alone can express, especially if you’ve got an application where you might be switching between multiple data sources.

Over the years we’ve seen several projects that repurposed analog gauges of various types, often for showing computer performance, but they generally involved having to drive the galvanometers directly. That these tachometers can simply be fed a simple digital signal should make implementing them into your project much easier.