Digital Guitar Of The Future Has No Strings

Electric guitars are great, but they’re just so 20th century. You’d think decades of musicians riffing on the instrument would mean there are no hacks left in the humble axe. You’d think so, but you’d be wrong. [Michael], for one, has taken it upon himself to reinvent the electric guitar for the digital era.

Gone are the strings, and the frets have vanished as well. The neck of this guitar is one long custom PCB, looking very sleek with black solder mask. Gold pads serve as touch sensors to give tone data over i2c (from unspecified touch sensing chips) to the Amtel Mega 32u4 at the heart of the build.

With no strings, strumming won’t work, so a laptop-style touchpad serves instead. That means every user interaction with this guitar is with capacitive touch sensors talking i2c. The X and Y coordinates of the touch, along with pressure are sent to the processor over the i2c bus, triggering an interrupt and offering quite a bit of opportunity for sound control.

Said sound control is, of course, done in MIDI. This lets the guitar control a whole variety of synths and/or software, and of course [Michael] is using more futuristic-sounding synths than a pack of guitar samples. That said, what exactly goes on with the MIDI controls is left frustratingly vague. Obviously fretting provides note selection, but does the touchpad just send a “note start” command, or are the X, Y and pressure data used in interesting ways? Is there multitouch support? The video doesn’t say.

How, exactly, the obviously-plastic body of the guitar was manufactured is also left unsaid. Is it a large resin print? SLS? It looks injection-molded, but that makes no sense for a one-off prototype. On the other hand, it looks like he’s selling these, so it may very well be an injection-molded production case we’re seeing being assembled here, and not a prototype at all.

For all the video leaves us wanting more information, we can’t help but admit the end product both looks and sounds very cool. (Skip to the 4:50 mark in the embedded video to hear it in action.) The only thing that would improve it would be a hurdy-gurdy mode. Thanks to [Michael] for the tip, and remember  we want to hear tips about all the weird and wonderful hacked-together instruments you make or find on the web.

Continue reading “Digital Guitar Of The Future Has No Strings”

2025 One-Hertz Challenge: The Flip Disc Clock

Do you like buses, or do you just like the flippy-flappy displays they use to show route information? Either way, you’ll probably love the flip-disc clock created by [David Plass].

The build is based around four seven-segment flip disc displays. The modules in question are from Flipo.io. They use a hefty 0.5 amp pulse to create a magnetic field strong enough to flip the discs from one side to the other with coils placed underneath the fluro/black flipdots themselves. The modules are controlled by a Wemos D1, which uses Wi-Fi to query a NTP server to keep accurate time. It then drives the necessary segments to display the current time. The whole thing is assembled in what appears to be some kind of kitchen storage tub.

Notably, the clock flips a couple dots once every second to meet the requirements of our One-Hertz Challenge. This also makes it obvious that the clock is working when it would otherwise be static. However, [David] notes commenting out that part of the code at times, as it can be quite loud!

This clock has got fluro dots, it’s well-executed, and it’s a fine entry to the 2025 One-Hertz Challenge. We’ve also previously explored how these beautiful displays work in detail, too. Meanwhile, if you’re busy repurposing some other kind of mechanical display technology, don’t hesitate to let us know!

 

 

 

 

Two For The Price Of One: BornHack 2024 And 2025 Badges

BornHack is a week-long summer hacker camp in a forest on the Danish island of Fyn, that consistently delivers a very pleasant experience for those prepared to make the journey. This year’s version was the tenth iteration of the camp and it finished a week ago, and having returned exhausted and dried my camping gear after a Biblical rainstorm on the last day, it’s time to take a look at the badges. In case you are surprised by the plural, indeed, this event had not one badge but two. Last year’s badge suffered some logistical issues and arrived too late for the camp, so as a special treat it was there alongside the 2025 badge for holders of BornHack 2024 tickets. So without further ado, it’s time to open the pack for Hackaday and see what fun awaits us. Continue reading “Two For The Price Of One: BornHack 2024 And 2025 Badges”

Hackaday Podcast Ep 331: Clever Machine Tools, Storing Data In Birds, And The Ultimate Cyberdeck

Another week, another Hackaday podcast, and for this one Elliot is joined by Jenny List, fresh from the BornHack hacker camp in Denmark.

There’s a definite metal working flavour to this week’s picks, with new and exciting CNC techniques and a selective electroplater that can transfer bitmaps to metal. But worry not, there’s plenty more to tease the ear, with one of the nicest cyberdecks we’ve ever seen, and a bird that can store images in its song.

Standout quick hacks are a synth that makes sounds from Ethernet packets, and the revelation that the original PlayStation is now old enough to need replacement motherboards. Finally we take a closer look at the huge effort that goes in to monitoring America’s high voltage power infrastructure, and some concerning privacy news from the UK. Have a listen!

And/or download your own freshly-baked MP3, full of unadulterated hacky goodness.

Continue reading “Hackaday Podcast Ep 331: Clever Machine Tools, Storing Data In Birds, And The Ultimate Cyberdeck”

A Proper Computer For A Dollar?

When a tipster came to us with the line “One dollar BASIC computer”, it intrigued us enough to have a good look at [Stan6314]’s TinyBasRV computer. It’s a small PCB that forms a computer running BASIC. Not simply a microcontroller with a serial header, this machine is a fully functioning BASIC desktop computer that takes a PS/2 keyboard and a VGA monitor. Would that cheap price stand up?

The board uses a CH32 microcontroller, a RISC-V part that’s certainly very cheap indeed and pretty powerful, paired with an I2C memory chip for storage. The software is TinyBASIC. There’s some GPIO expandability and an I2C bus, and it’s claimed it can run in headless mode for a BASIC program to control things.

We haven’t added up all the parts in the BoM to check, but even if it’s not a one dollar computer it must come pretty close. We can see it could make a fun project for anyone. It’s certainly not the only small BASIC board out there, it’s got some competition.

Thanks [Metan] for the tip.

This Week In Security: Spilling Tea, Rooting AIs, And Accusing Of Backdoors

The Tea app has had a rough week. It’s not an unfamiliar story: Unsecured Firebase databases were left exposed to the Internet without any authentication. What makes this story particularly troubling is the nature of the app, and the resulting data that was spilled.

Tea is a “dating safety” application strictly for women. To enforce this, creating an account requires an ID verification process where prospective users share their government issued photo IDs with the platform. And that brings us to the first Firebase leak. 59 GB of photo IDs and other photos for a large subset of users. This was not the only problem.

There was a second database discovered, and this one contains private messages between users. As one might imagine, given the topic matter of the app, many of these DMs contain sensitive details. This may not have been an unsecured Firebase database, but a separate problem where any API key could access any DM from any user.

This is the sort of security failing that is difficult for a company to recover from. And while it should be a lesson to users, not to trust their sensitive messages to closed-source apps with questionable security guarantees, history suggests that few will learn the lesson, and we’ll be covering yet another train-wreck of similar magnitude in another few months.

Continue reading “This Week In Security: Spilling Tea, Rooting AIs, And Accusing Of Backdoors”

A filament extruder is shown on a workbench. On the front is a knob and the display of a PID controller. A black geared spool is mounted on the top of the extruder, and on the right, a clear plastic bottle is positioned over a metal rod.

Turning Waste Plastic Into Spools Of Filament

Despite being a readily-available source of useful plastic, massive numbers of disposable bottles go to waste every day. To remedy this problem (or take advantage of this situation, depending on your perspective) [Igor Tylman] created the PETmachine, an extruder to make 3D printer filament from PET plastic bottles.

The design of the extruder is fairly standard for such machines: a knife mounted to the frame slices the bottle into one long strip, which feeds through a heated extruder onto a spool which pulls the plastic strand through the system. This design stands out, though, in its documentation and ease of assembly. The detailed assembly guides, diagrams, and the lack of crimped or soldered connections all make it evident that this was designed to be built in a classroom. The filament produced is of respectable quality: 1.75 mm diameter, usually within a tolerance of 0.05 mm, as long as the extruder’s temperature and the spool’s speed were properly calibrated. However, printing with the filament does require an all-metal hotend capable of 270 ℃, and a dual-drive extruder is recommended.

One issue with the extruder is that each bottle only produces a short strand of filament, which isn’t sufficient for printing larger objects. Thus, [Igor] also created a filament welder and a spooling machine. The welder uses an induction coil to heat up a steel tube, inside of which the ends of the filament sections are pressed together to create a bond. The filament winder, for its part, can wind with adjustable speed and tension, and uses a moving guide to distribute the filament evenly across the spool, avoiding tangles.

If you’re interested in this kind of extruder, we’ve covered a number of similar designs in the past. The variety of filament welders, however, is a bit more limited.

Thanks to [RomanMal] for the tip!