Mobile Coffee Table Uses Legs To Get Around

For getting around on most surfaces, it’s hard to beat the utility of the wheel. Versatile, inexpensive, and able to be made from a wide array of materials has led to this being a cornerstone technology for the past ten thousand years or so. But with that much history it can seem a little bit played out. To change up the locomotion game, you might want to consider using robotic legs instead. That’s what [Giliam] designed into this mobile coffee table which uses custom linkages to move its legs and get itself from place to place around the living room.

Continue reading “Mobile Coffee Table Uses Legs To Get Around”

Hydrogen Generation With Seawater, Aluminum, And… Coffee?

A team at MIT led by [Professor Douglas Hart] has discovered a new, potentially revelatory method for the generation of hydrogen. Using seawater, pure aluminum, and components from coffee grounds, the team was able to generate hydrogen at a not insignificant rate, getting the vast majority of the theoretical yield of hydrogen from the seawater/aluminum mixture. Though the process does use indium and gallium, rare and expensive materials, the process is so far able to recover 90% of the indium-gallium used which can then be recycled into the next batch. Aluminum holds twice as much energy as diesel, and 40x that of Li-Ion batteries. So finding a way to harness that energy could have a huge impact on the amount of fossil fuels burned by humans!

Pure, unoxidized aluminum reacts directly with water to create hydrogen, as well as aluminum oxyhydroxide and aluminum hydroxide. However, any aluminum that has had contact with atmospheric air immediately gets a coating of hard, unreactive aluminum oxide, which does not react in the same way. Another issue is that seawater significantly slows the reaction with pure aluminum. The researchers found that the indium-gallium mix was able to not only allow the reaction to proceed by creating an interface for the water and pure aluminum to react but also coating the aluminum pellets to prevent further oxidization. This worked well, but the resulting reaction was very slow.

Apparently “on a lark” they added coffee grounds. Caffeine had already been known to act as a chelating agent for both aluminum and gallium, and the addition of coffee grounds increased the reaction rate by a huge margin, to the point where it matched the reaction rate of pure aluminum in deionized, pure water. Even with wildly varying concentrations of caffeine, the reaction rate stayed high, and the researchers wanted to find out specifically which part of the caffeine molecule was responsible. It turned out to be imidazole, which is a readily available organic compound. The issue was balancing the amount of caffeine or imidazole added versus the gallium-indium recovery rate — too much caffeine or imidazole would drastically reduce the recoverable amount of gallium-indium.

Continue reading “Hydrogen Generation With Seawater, Aluminum, And… Coffee?”

Supercon 2023: Reverse Engineering Commercial Coffee Machines

There was a time when a coffee vending machine was a relatively straightforward affair, with a basic microcontroller doing not much more than the mechanical sequencer it replaced. A modern machine by contrast has 21st century computing power, with touch screens, a full-fat operating system, and a touch screen interface. At Hackaday Supercon 2023, [Kuba Tyszko] shared his adventures in the world of coffee, after reverse engineering a couple of high-end dispensing machines. Sadly he doesn’t reveal the manufacturer, but we’re sure readers will be able to fill in the gaps.

Under the hood is a PC running a Linux distro from a CF card. Surprisingly the distros in question were Slax and Lubuntu, and could quite easily be investigated. The coffee machine software was a Java app, which seems to us strangely appropriate, and it communicated to the coffee machine hardware via a serial port. It’s a tale of relatively straightforward PC reverse engineering, during which he found that the machine isn’t a coffee spy as its only communication with its mothership is an XML status report.

In a way what seems almost surprising is how relatively straightforward and ordinary this machine is. We’re used to quirky embedded platforms with everything far more locked down than this. Meanwhile if hacking vending machines is your thing, you can find a few previous stories on the topic.

Continue reading “Supercon 2023: Reverse Engineering Commercial Coffee Machines”

Kaffa Roastery founder Svante Hampf shows a bag of their AI-conic coffee blend.

AI-Created Coffee Blend Isn’t Terrible

Weren’t we just talking about coffee-based sacrilege the other day? Here’s something to make the single-origin bean snobs chew their espresso cups: an artisan roastery in Helsinki is offering a coffee blend created by artificial intelligence called AI-conic. The idea, of course, is that technology will lighten the workload needed to produce coffee.

This is an interesting development because Finland consumes the most coffee in the world, according to the International Coffee Organization. Coffee roasting is a highly-valued traditional artisan profession there, so it stands to reason that they might turn to technology for help.

Just like with scotch whisky, there’s nothing wrong with coffee blends outright. Bean blends are good for consistency, when you want every cup to taste pretty much exactly the same. Single-origin beans, though, are traceable to one location, and as a result, they usually have a distinct flavor based on the climate they’re grown in.

If you’re new to coffee, blends are a nice, safe way to start out. And, interestingly, the AI chose to make the blend out of four different types of beans instead of the usual two or three, despite being tasked with creating a blend that would suit the palates of coffee enthusiasts. But the coffee experts agreed that the AI blend was “perfect” and needed no human intervention. We probably won’t be getting to Finland anytime soon, so if you try it, let us know how it tastes!

Do you like cold brew? How would you like to be able to brew some in just three minutes?

A DIY coffee roaster with part callouts.

Follow The Red Ball Wobble Disk Roaster To Coffee Excellence

If you’ve never considered roasting your own coffee at home, you may be surprised to learn that it can be done in a few minutes with a regular popcorn popper and not much else. After all, you only really need two things to roast coffee: heat, and constant agitation to distribute that heat evenly. While the popcorn popper provides both, it’s easy to end up with semi-uneven roasts, probably because the beans are mostly just spinning around and not being tossed as well as they could be. Eventually, one might want a more advanced machine, and that’s where something like [Larry Cotton]’s latest wobble disk roaster can step in.

For starters, this machine roasts more beans than the average popcorn popper in a single throw — the maximum is 350g, or just over three-quarters of a full pound, which is way more than the average popcorn machine will hold. It essentially consists of a heat gun pointed upwards at a sieve full of green coffee beans that are being constantly pushed around by a motorized wobbling disk. As the heat blows, the large metal disk does figure eights through the beans, keeping the heat nice and even. So where does the red ball come in? It’s at the bottom, keeping the flying bean skins (chaff) from entering the heat gun’s fan motor.

Toward the end of the short video after the break, you’ll see a diagram showing all the parts of this roaster. If that’s not enough for you, here’s a build guide for a previous wobble disk roaster (PDF) that should be quite helpful in building either version.

If you want to see some of Larry’s previous machines, we’ve got ’em. And then you can let Hackaday Editor-in-Chief [Elliot Williams] tell you all about roasting at home.

Continue reading “Follow The Red Ball Wobble Disk Roaster To Coffee Excellence”

Smart Coffee Replaces Espresso Machine Controller With Arduino, Sensors

A common hacker upgrade to an espresso machine is to improve stability and performance with a better temperature controller, but [Schematix]’s Smart Coffee project doesn’t stop there. It entirely replaces the machine’s controller and provides an optional array of improvements for a variety of single-boiler machines (which is most of them).

Smart Coffee isn’t free, it costs 16 NZD (about 10 USD) but there is a free demo version. There is no official support, but there are wiring guides and sources aplenty from which to purchase the various optional parts. It runs on an Arduino MEGA 2560 PRO (or similar microcontroller) and supports a wide array of additional hardware including pressure transducer, water level sensor, flow meter, OLED display, and more.

Modification of one’s espresso machine is a rewarding endeavor, but the Smart Coffee project provides a way for one to get straight to the hacking and function modifying, instead of figuring out the wiring hardware interfacing from scratch.

We’ve seen [Schematix]’s work before with a DIY induction heater which showed off thoughtful design, and it’s clear he takes his coffee at least as seriously. Check out the highly comprehensive overview and installation video for Smart Coffee, embedded just below the page break.

Continue reading “Smart Coffee Replaces Espresso Machine Controller With Arduino, Sensors”

Robotic Coffee Comes To Brooklyn, But Will It Stay?

Robots are cool. Everyone knows it, and [Eater NY] highlights a coffee shop with a robotic server opening in Brooklyn. While robots able to prepare and serve drinks or food is not new, it isn’t every day a brick-and-mortar café with a robot behind the counter opens up. But expensive automation isn’t the only puzzle piece needed to make a location work.

A robotic coffee shop (like a robotic burger joint) certainly offers novelty, but can it sustain itself beyond that?

As one example, the linked article above points out that the city of New York prohibits entirely cashless businesses. Establishments must accept cash payments, and it’s unclear how the touchscreen-driven system would comply with that requirement.

There are also many tasks involved in running even a modest establishment — loading, cleaning, and maintaining for example — that can’t be realistically taken care of by an immobile robot barista. It’s unclear to what extent the robotic coffee shop will employ human staff, but it’s clear that human involvement is something that isn’t going be eliminated any time soon.

Some of you may remember the robotic burger joint that our own Brian Benchoff managed to check out, and many of his same observations come to mind. The robot burger was perhaps ahead of its time (its single location is listed as closed on Google maps with no recent activity) but maybe the robot coffee place can make it work. Still, expensive automation is only one piece of a system, and the ability to crank out a drink per minute 24/7 might not actually be the missing link.