Hackaday Prize 2023: A 3D Printed Vertical Wind Turbine

We feature a lot of off-grid power projects here at Hackaday, whether they’re a micropower harvester or something to power a whole house. Somewhere in the middle lies [esposcar90]’s 3D-printed vertical wind turbine, which it is claimed can deliver 100 watts from its diminutive tabletop package.

It’s designed to be part of a package with another turbine but makes a very acceptable stand-alone generator. The arms have large scoop-like 3D-printed vanes and drive a vertical shaft up the centre of the machine. This drives a set of satellite gears connected to a pair of DC permanent magnet motors, which do the work of generating. For different wind situations, there are even some differing STL gear choices to speed up the motors. The motors are 12V devices, so we’re guessing the output voltage will be in that ballpark. However, it’s not made entirely clear in the write-up.

Continue reading “Hackaday Prize 2023: A 3D Printed Vertical Wind Turbine”

Build Your Own Vertical Axis Wind Turbine

You can build a copy of this vertical wind turbine in a weekend and it won’t cost you all that much. Applied Sciences developed the hardware and they’re sharing all for the build details. You will be taken through every part of the build starting with the fin assembly which is made from stove-pipe material. This is a perfect raw material because it is already curved and suited for aerodynamic use in much the same way that PVC pipe is for making fins and we would expect it to be a bit lighter in weight. You will also need to turn your own coils when assembling the stator. This particular build process uses nine coils embedded in fiberglass. They remain stationary while two different discs, each containing a dozen rare earth magnets, rotate in close proximity to induce a current. It outputs three-phase AC current which can be turned to DC using a bridge rectifier and then further regulated for storage in batteries.

[Thanks Miguel]

Vertical Axis Wind Turbine Update

[Faroun] sent in his updated vertical wind turbine. After running his previous one for a while, he felt that the motor he was using was inadequate, it required too high of RPM to produce what he wanted. He didn’t want to gear it up, fearing that the light construction couldn’t sustain rotation.

He built a new version that has the same surface area of fins, but much higher RPM. The new one, dubbed V8 is made mainly from PVC and an Amatek DC motor. His goal was to produce 100 watts at 35km/h. He doesn’t really state whether or not he achieved it though.

DIY Vertical Axis Wind Turbine

This vertical axis wind turbine (VAWT) uses five 3” PVC pipes cut in half for blades rotating on three kids bicycle wheels to spin an Ametek 38 volt motor or a wind blue alternator. The whole thing spins in a frame that is a 12 feet high and 2 foot square box that is able to sit on his deck. In total it cost him about $125 plus time, a bit more if you use the wind blue alternator.

Video of the vertical turbine in action after the break.
Continue reading “DIY Vertical Axis Wind Turbine”

A V2 Rocket Inspired Steam Turbine Skateboard Is Just Around The Corner

[Integza] never fails to amuse with his numerous (and sometimes really sketchy) attempts to create usable thrust, by pretty much all means possible and the latest video (embedded below) attempting to run a reaction turbine from decomposing hydrogen peroxide, doesn’t fail to disappoint. The inspiration came from the WWII V2 rocket, which used Sodium Permanganate to breakdown Hydrogen Peroxide. This produced high pressure steam, which spun a turbine, which in turn drove the turbopumps that delivered the needed huge quantity of alcohol and liquid oxygen into the combustion chamber.

After an initial test of this permanganate-peroxide reaction proved somewhat disappointing (and messy) he moved on to a more controllable approach — using a catalytic converter from a petrol scooter in place of the messy permanganate. This worked, so the next task was to build the turbine. Naturally, this was 3D printed, and the resulting design appeared to work pretty well with compressed air as the power source. After scaling up the design, and shifting to CNC-machined aluminium, it was starting to look a bit more serious. The final test shows the turbine being put through its paces, running from the new precious metal catalyst setup, but as can be seen from the video, there is work to be done.

There appears to be a fair amount of liquid peroxide passing through into the turbine, which is obviously not desirable. Perhaps the next changes should be the mount the catalyser vertically, to prevent the liquid from leaving so easily, as well as adding some baffling to control the flow of the liquid, in order to force it to recycle inside the reaction vessel? We can’t wait to see where this goes, hopefully the steam-turbine powered skateboard idea could actually be doable? Who knows? But we’re sure [Integza] will find a way!

With steam power, there’s more than one way to get usable rotational work, like using a reciprocating engine, which can be expanded to a whole machine shop, and whilst boiling water (or catalytically decomposing Hydrogen Peroxide)  provides high pressure gas, how about just using boiling liquid nitrogen? Possibly not.

Continue reading “A V2 Rocket Inspired Steam Turbine Skateboard Is Just Around The Corner”

Typhoon-Tough Turbines Withstand Wild Winds

It’s really beginning to feel as though the problem of climate change is a huge boulder rolling down a steep hill, and we have the Sisyphean task of trying to reverse it. While we definitely need to switch as much of the planet over to clean, green energy as soon as possible, the deployment should be strategic. You know, solar panels in sunny places, and wind turbines in windy places. And for the most part, we’re already doing that.

A test unit in Okinawa, Japan. Image via Challenergy

In the meantime, there are also natural disasters to deal with, some of which are worsened by climate change. Eastern and Southeast Asian countries are frequently under the threat of typhoons that bring strong, turbulent winds with them. Once the storms pass, they leave large swaths of lengthy power outages in their wake.

Studies have shown that these storms are gaining strength over the years, leading to more frequent disruption of existing power systems in those areas. Wind power is the ideal solution where storms have come through and knocked out traditional power delivery all over a region. As long as the turbines themselves can stand up to the challenge, they can be used to power micro-grids when other delivery is knocked out.

Bring On the Typhoons?

Unfortunately, the conventional three-bladed wind turbines you see dotting the plains can’t stand up to the awesome power of typhoons. But vertical axis wind turbines can. Though they have been around for many years, they may have finally found their niche.

A Japanese startup called Challenergy wants to face the challenge of typhoons head on. They’ve built a vertical axis wind turbine that’s built to not only to withstand typhoon-level winds, it’s designed to make the most of them. Instead of horizontally-situated blades arranged like spokes or flower petals, these turbines have vertical cylinders that collect wind by harnessing the Magnus effect.

Continue reading “Typhoon-Tough Turbines Withstand Wild Winds”

HAWT Wind Turbine Is Mostly 3D Printed

Wind turbines are a great source of renewable energy, and a great DIY project, too. They can be built with all kinds of materials and the barrier for entry is low for the beginner. [Fab] has built just such a device, taking advantage of modern construction techniques, and dubbed it the WinDIY.

The WinDIY design is mostly 3D printed, with a familiar three-bladed design. The diameter of the rotor is 1.2 m, meaning that braking and regulating the turbine is required for safety in high winds. [Fab] is aiming to achieve this control with a combination of mechanical and electronic braking, as well as variable-pitch blades. The benefit of 3D printing the design is it allows iterations to be made quickly, particularly of parts with complex geometries that would be too time-consuming or expensive to machine otherwise.

[Fab]’s writeup goes into great detail on topics like the design of the pitch control systems and other minutae, which should serve as a great reference for anyone else working on a similar project. If you’re looking for something with more of a sci-fi future vibe, consider attempting a vertical-axis build instead.