Self-Assembling Virus Model Is 3D Printed

Sometimes a visual or tactile learning aid can make all the difference to elucidating a concept to an audience. In the case viruses and their methods of self-assembly, [AtomicVirology] made a 3D printed device to demonstrate how they work. 

The result of this work is a printed dodecahedron, assembled from multiple components. Each face of the dodecahedron consists of a 5-sided pentagon, and is a separate piece. Each face contains magnets which allow the various faces to stick together. Amazingly, when a bunch of these faces are all thrown into a container and jumbled together, they eventually assemble themselves into complete dodecahedrons.

While it’s no virus, and the parts can’t replicate themselves en masse,  the demonstration is instructive. Viruses themselves self-assemble in a similar fashion, thanks to sub-units that interact with each other in the tumultuous environment of a host cell.

We love a good teaching tool around these parts. 3D printing has the benefit of allowing teachers to create their own such devices with just a few hours spent in some CAD software.

Continue reading “Self-Assembling Virus Model Is 3D Printed”

A huge cardboard computer with an equally huge mouse

Massive Mouse Game Mimics Classic Software Crashes

Computer mice come in all kinds of shapes and sizes, but are typically designed to fit in the palm of your hand. While some users with large hands may find standard mice uncomfortably small, we don’t think anyone will ever make that complaint about the humongous peripheral [Felix Fisgus] made for a game called Office Job at the ENIAROF art festival in Marseille. With a length of about two meters we suspect it might be the largest functional computer mouse in existence.

An optical mouse sensor mounted on a cardboard frameInside the massive mouse is a wooden pallet with four caster wheels that enable smooth movement in all directions. This motion is detected by an ordinary optical mouse sensor: perhaps surprisingly, these can be used at this enormous scale simply by placing a different lens in front.

As for the mouse button, [Felix] and his colleagues found of that the bottom of an empty five-liter can has a nice “pop” to it and installed one in the front section of the device, hooked up to an ESP32 board that communicates with a computer through Bluetooth.

The mouse connects to an equally huge desktop computer, powered by a Raspberry Pi, on which users play a game that involves clicking on error messages from a wide variety of old and new operating systems. Moving the mouse and pressing its button to hit those dialog boxes is a two-person job, and turns the annoyance of software errors into a competitive game.

Optical mouse sensors are versatile devices: apart from their obvious purpose they can also serve as motion sensors for autonomous vehicles, or even as low-resolution cameras.

Continue reading “Massive Mouse Game Mimics Classic Software Crashes”

The Story Behind The TVGuardian Curse Catcher

The recent flurry of videos and posts about the TVGuardian foul language filter brought back some fond memories. I was the chief engineer on this project for most of its lifespan. You’ve watched the teardowns, you’ve seen the reverse engineering, now here’s the inside scoop.

Gumby is Born

TVG Model 101 Gumby (Technology Connections)

Back in 1999, my company took on a redesign project for the TVG product, a box that replaced curse words in closed-captioning with sanitized equivalents. Our first task was to take an existing design that had been produced in limited volumes and improve it to be more easily manufactured.

The original PCB used all thru-hole components and didn’t scale well to large quantity production. Replacing the parts with their surface mount equivalents resulted in Model 101, internally named Gumby for reasons long lost. If you have a sharp eye, you will have noticed something odd about two parts on the board as shown in [Ben Eater]’s video. The Microchip PIC and the Zilog OSD chip had two overlapping footprints, one for thru-hole and one for SMD. Even though we preferred SMD parts, sometimes there were supply issues. This was a technique we used on several designs in our company to hedge our bets. It also allowed us to use a socketed ICs for testing and development. Continue reading “The Story Behind The TVGuardian Curse Catcher”

HUD-Like Clock Is A Transparent Time Display

While we have all types of displays these days, there’s something special about those that appear to float in the air. This HUD clock from [Kiwi Bushwalker] is one such example.

The build relies on four 8×8 LED matrixes to display the four digits that make up the time, run by the MAX7219 driver chip. However, the LEDs aren’t viewed directly — that would be too simple. Instead, the matrixes shoot their light up at an angle towards a tilted piece of clear acrylic. This creates a “heads-up display” look where the numbers appear to float in the air.  The clock gets accurate time from an NTP time server over WiFi, thanks to the ESP32 microcontroller that runs the show.

It’s a straightforward clock build in many ways, but we particularly like the use of the heads-up display technique. It’s almost surprising we don’t see these projects more often, for things like car dashboard displays or targeting womp rats in a T-16 landspeeder. If you’ve been whipping up your own HUD projects, don’t hesitate to notify the tipsline!

Continue reading “HUD-Like Clock Is A Transparent Time Display”

Resurrecting PONG, One Jumper Wire At A Time

Between 1976 and 1978, over one million Coleco Telstar video game consoles were sold. The Killer App that made them so desirable? PONG. Yep, those two paddles bouncing a ball around a blocky tennis court were all the rage and helped usher in a new era. And as [Dave] of Dave’s Garage shows us in the video below the break, the bringing the old console back to life proved simpler than expected!

Thankfully, the console is built around what [Dave] quite aptly calls “PONG on a chip”, the General Instrument AY-3-8500 which was designed to make mass production of consoles possible. The chip actually contains several games, although PONG was the only one in use on the Coleco.

After removing the CPU from the non-functional console, [Dave] breathed life into it by providing a 2 MHz clock signal that was generated by an Arduino, of all things. A typical 2N2222 amplifies the audio, and a quick power up showed that the chip was working and generating audio.

Video is smartly taken care of just as it was in the original design, by combining various signals with a 4072 OR gate. With various video elements and synchronization patterns combined into a composite video signal, [Dave] was able to see the game on screen, but then realized that he’d need to design some “paddles”. We’ll leave that up to you to watch in the video, but make sure to check the comments section for more information on the design.

Is a breadboarded PONG console not retro enough for you? Then check out this old school mechanical version that was found languishing in a thrift store.

Continue reading “Resurrecting PONG, One Jumper Wire At A Time”

Open World 3D Game Runs On The RP2040 Microcontroller

The Raspberry Pi RP2040 is versatile and cheap, but it’s by no means known as the most powerful microcontroller on the world. Regardless, it is capable of great things, as demonstrated by [Bernhard Strobl], who built a 3D open world game engine that runs on that very platform.

The graphics are simple, but with a compelling low-poly style.

The game engine itself is built to run on the Pimoroni PicoSystem, which is essentially a handheld gaming platform built around the RP2040 chip. The engine takes advantage of the multi-core nature of the RP2040, using the second core as a dedicated rasterizer to keep frames pumping out.

The basic game [Bernhard] built in the engine features 50 NPC characters and 50 further zombies, all running at the same time. Specs are impressive, with the engine’s included game simulating a “world” of 120 x 120 meters in size. As a maximum limit, the engine can handle a 2.56 x 2.56 km world, thanks to the use of 8-bit integers for directional data. However, limited storage space would make it difficult to achieve such a large world in practice.

We don’t get to see much of the gameplay in the YouTube video, but the quality of the graphics is impressive for such a cheap microcontroller. It seems within the bounds of possibility that an actual open-world game could be practical on the PicoSystem if only enough storage were available. Video after the break.

Continue reading “Open World 3D Game Runs On The RP2040 Microcontroller”

After 40 Years, Adobe Releases PostScript Source V0.10 For Posterity

Celebrating their 40th anniversary, Adobe released the source code of PostScript v0.10 to the Computer History Museum. But before you ask, we tried and it won’t compile with GCC out of the box – it’s missing at least except.h, but we’d bet you can hack around it with a little dedication.

PostScript is the precursor to PDF, and at the time it was revolutionary. Coming out of Xerox’s PARC, the idea was to create device- and resolution-independent documents where all the characters, symbols, and graphics are described by their shapes instead of bitmaps. PostScript’s secret sauce was in how it went back to a pixel-based representation for end use on monitors or printers. It’s no exaggeration to say that this ended up revolutionizing the print industry, and it makes sense in the CHM’s collection.

Still, on the trade-secret front, you shouldn’t get too excited. Apparently the code released here only includes a first-draft version of Adobe’s font hinting algos, as evidenced by the early version number. Nonetheless, you’re free to dig into pretty readable C. For instance, vm.c contains the virtual machine that implements PostScript’s almost Forth-like language.

Of course, if you’d just like to mess around with PostScript, downloading a modern open-source interpreter like GhostScript probably makes a lot more sense. Even so, it’s fun to see the original codebase where it all started.