Hackaday Podcast Episode 314: It’s Pi, But Also PCBs In Living Color And Ultrasonic Everything

It might not be Pi Day anymore, but Elliot and Dan got together for the approximately 100*Pi-th episode of the Podcast to run through the week’s coolest hacks. Ultrasound seemed to be one of the themes, with a deep dive into finding bugs with sonar as well as using sound to cut the cheese — and cakes and pies, too.

The aesthetics of PCBs were much on our minds, too, from full-color graphics on demand to glow-in-the-dark silkscreens. Is automation really needed to embed fiber optics in concrete? Absolutely! How do you put plasma in a bottle? Apparently, with kombucha, Nichrome, and silicone. If you need to manage your M:TG cards, scribble on the walls, or build a mechanical chase light, we’ve got the details. And what exactly is a supercomputer? We can’t define it, but we know one when we see it.

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 314: It’s Pi, But Also PCBs In Living Color And Ultrasonic Everything”

Keep Tabs On Your Vehicle’s Needs With LubeLogger

It doesn’t matter if its a Vespa or a Peterbilt truck — if you ignore the maintenance needs of your vehicle, you do so at your own peril. But it can be difficult enough to keep track of basic oil changes, to say nothing of keeping records on what parts were changed when. Instead of cramming more receipts into your glove box, maybe give LubeLogger a try.

This free and open source software tool is designed to make it easy for individuals to keep track of both the routine maintenance needs of their vehicles, as well as keep track of any previous or upcoming repairs and upgrades. Released under the MIT license, LubeLogger is primarily distributed as a Docker image that makes it easy to self-host the tool should you wish to keep your data safe at home rather than on somebody’s server out in the Wild West of the modern Internet.

Continue reading “Keep Tabs On Your Vehicle’s Needs With LubeLogger”

This Week In Security: IngressNightmare, NextJS, And Leaking DNA

This week, researchers from Wiz Research released a series of vulnerabilities in the Kubernetes Ingress NGINX Controller  that, when chained together, allow an unauthorized attacker to completely take over the cluster. This attack chain is known as IngressNightmare, and it affected over 6500+ Kubernetes installs on the public Internet.

The background here is that web applications running on Kubernetes need some way for outside traffic to actually get routed into the cluster. One of the popular solutions for this is the Ingress NGINX Controller. When running properly, it takes incoming web requests and routes them to the correct place in the Kubernetes pod.

When a new configuration is requested by the Kubernetes API server, the Ingress Controller takes the Kubernetes Ingress objects, which is a standard way to define Kubernetes endpoints, and converts it to an NGINX config. Part of this process is the admission controller, which runs nginx -t on that NGINX config, to test it before actually deploying.

As you might have gathered, there are problems. The first is that the admission controller is just a web endpoint without authentication. It’s usually available from anywhere inside the Kubernetes cluster, and in the worst case scenario, is accessible directly from the open Internet. That’s already not great, but the Ingress Controller also had multiple vulnerabilities allowing raw NGINX config statements to be passed through into the config to be tested. Continue reading “This Week In Security: IngressNightmare, NextJS, And Leaking DNA”

Dwingeloo telescope with sun shining through

Dwingeloo To Venus: Report Of A Successful Bounce

Radio waves travel fast, and they can bounce, too. If you are able to operate a 25-meter dish, a transmitter, a solid software-defined radio, and an atomic clock, the answer is: yes, they can go all the way to Venus and back. On March 22, 2025, the Dwingeloo telescope in the Netherlands successfully pulled off an Earth-Venus-Earth (EVE) bounce, making them the second group of amateurs ever to do so. The full breakdown of this feat is available in their write-up here.

Bouncing signals off planets isn’t new. NASA has been at it since the 1960s – but amateur radio astronomers have far fewer toys to play with. Before Dwingeloo’s success, AMSAT-DL achieved the only known amateur EVE bounce back in 2009. This time, the Dwingeloo team transmitted a 278-second tone at 1299.5 MHz, with the round trip to Venus taking about 280 seconds. Stockert’s radio telescope in Germany also picked up the returning echo, stronger than Dwingeloo’s own, due to its more sensitive receiving setup.

Post-processing wasn’t easy either. Doppler shift corrections had to be applied, and the received signal was split into 1 Hz frequency bins. The resulting detections clocked in at 5.4 sigma for Dwingeloo alone, 8.5 sigma for Stockert’s recording, and 9.2 sigma when combining both datasets. A clear signal, loud and proud, straight from Venus’ surface.

The experiment was cut short when Dwingeloo’s transmitter started failing after four successful bounces. More complex signal modulations will have to wait for the next Venus conjunction in October 2026. Until then, you can read our previously published article on achievements of the Dwingeloo telescope.

Scanning Film The Way It Was Meant To Be

Scanning a film negative is as simple as holding it up against a light source and photographing the result. But should you try such a straightforward method with color negatives it’s possible your results may leave a little to be desired. White LEDs have a spectrum which looks white to our eyes, but which doesn’t quite match that of the photographic emulsions.

[JackW01] is here with a negative scanning light that uses instead a trio of red, green, and blue LEDs whose wavelengths have been chosen for that crucial match. With it, it’s possible to make a good quality scan with far less post-processing.

The light itself uses 665 nm for red, 525 nm for green, and 450 nm blue diodes mounted in a grid behind a carefully designed diffuser. The write-up goes into great detail about the spectra in question, showing the shortcomings of the various alternatives.

We can immediately see the value here at Hackaday, because like many a photographer working with analogue and digital media, we’ve grappled with color matching ourselves.

This isn’t the first time we’ve considered film scanning but it may be the first project we’ve seen go into such detail with the light source. We have looked at the resolution of the film though.

AqMood Is An Air Quality Monitor With An Attitude

You take your air quality seriously, so shouldn’t your monitoring hardware? If you’re breathing in nasty VOCs or dust, surely a little blinking LED isn’t enough to express your displeasure with the current situation. Luckily, [Tobias Stanzel] has created the AqMood to provide us with some much-needed anthropomorphic environmental data collection.

To be fair, the AqMood still does have its fair share of LEDs. In fact, one might even say it has several device’s worth of  them — the thirteen addressable LEDs that are run along the inside of the 3D printed diffuser will definitely get your attention. They’re sectioned off in such a way that each segment of the diffuser can indicate a different condition for detected levels of particulates, VOCs, and CO2.

But what really makes this project stand out is the 1.8 inch LCD mounted under the LEDs. This display is used to show various emojis that correspond with the current conditions. Hopefully you’ll see a trio of smiley faces, but if you notice a bit of side-eye, it might be time to crack a window. If you’d like a bit more granular data its possible to switch this display over to a slightly more scientific mode of operation with bar graphs and exact figures…but where’s the fun in that?

[Tobias] has not only shared all the files that are necessary to build your own AqMood, he’s done a fantastic job of documenting each step of the build process. There’s even screenshots to help guide you along when it’s time to flash the firmware to the XIAO Seeed ESP32-S3 at the heart of the AqMood.

If you prefer your air quality monitoring devices be a little less ostentatious, IKEA offers up a few hackable models that might be more your speed.

Half The Reflow Oven You Expected

Toaster oven reflow projects are such a done deal that there should be nothing new in one here in 2025. Take a toaster oven, an Arduino, and a thermocouple, and bake those boards! But [Paul J R] has found a new take on an old project, and better still, he’s found the most diminutive of toaster ovens from the Australian version of Kmart. We love the project for the tiny oven alone.

The brains of the operation is an ESP32, in the form of either a TTGO TTDisplay board or an S3-Zero board on a custom carrier PCB, with a thermistor rather than a thermocouple for the temperature sensing, and a solid state relay to control mains power for the heater. All the resources are in a GitHub repository, but you may have to make do with a more conventionally-sized table top toaster oven if you’re not an Aussie.

If you’re interested, but want a better controller board, we’ve got you covered.