Automate Your Desk With The Upsy Desky

It might be surprising for some, but humans actually evolved to be long-distance runners. We aren’t very fast comparatively, but no other animal can run for as long or as far as a human can. Sitting at a desk, on the other hand, is definitely not something that we’re adapted to do, so it’s important to take some measures to avoid many of the problems that arise for those that sit at a desk or computer most of the day. This build takes it to the extreme, not only implementing a standing desk but also a ton of automation for that desk as well.

This project is an improvement on a prior build by [TJ Horner] called the WiFi Standing Desk Controller. This new version has a catchier name, and uses an ESP32 to run the show. The enclosure is 3D printed and the control board includes USB-C and a hardware UART to interface with the controller. The real perks of this device are the automation, though. The desk can automatically lift if the user has been sitting too long, and could also automatically lift if it detects no one is home (to help keep a cat off of the desk, for example). It also includes presets for different users, and can export data to other software to help analyze sitting and standing patterns.

The controller design is open source and could be adapted to work on a wide-array of powered desks. As we’ve seen in the past, with the addition of a motor, even hand-crank standing desks can be upgraded. If you haven’t gotten into the standing desk trend yet, we hope that you are at least occasionally going for a run.

Sleep Posture Monitor Warns You Away From Dangerous Positions

Age, we’re told, is just a number, but that number seems to be the ever-increasing count of injuries of a ridiculous nature. Where once the younger version of us could jump from a moving car or fall out of a tree with just a few scrapes to show for the effort, add a few dozen trips around the sun and you find that just “sleeping funny” can put you out of service for a week.

Keen to avoid such woes, [Elite Worm] came up with this sleep posture alarm to watch for nocturnal transgressions, having noticed that switching to a face-down sleeping position puts a kink in his neck. He first considered using simple mechanical tilt switches to detect unconscious excursions from supine to prone. But rather than be locked into a single posture, he decided to go with an accelerometer instead. The IMU and an ATtiny85 live on a custom PCB along with a small vibrating motor, which allows for more discrete alerts than a buzzer or beeper would.

Placed in a 3D printed enclosure and clipped to his shorts, the wearable is ready to go. The microcontroller wakes up every eight seconds to check his position, sounding the alarm if he’s drifting into painful territory. [Elite] did some power analysis on the device, and while there’s room for improvement, the current estimated 18 days between charging isn’t too shabby. The video below has all the details; hopefully, design files and code will show up on his GitHub soon.

Considering that most of us spend a third of our life sleeping, it’s little wonder hackers have attacked sleep problems with gusto. From watching your brainwaves to AI-generated nonsense ASMR, there’s plenty of hacking fodder once your head hits the pillow.

Continue reading “Sleep Posture Monitor Warns You Away From Dangerous Positions”

A clock displaying a micro QR code

LED Clock Uses Micro QR Codes To Show The Time

As you probably know, we love our clocks here at Hackaday. Odd display technologies are always interesting to see, as are unusual encoding techniques such as binary, ternary or higher-radix number systems. Still, clocks are typically meant to be human-readable, even if their encoding might be a little eccentric.

[Kitchi] however built an LED-based clock that is not human-readable, at least not without quite a bit of training. This is because it displays the time by generating a QR code, which only becomes readable to most humans through the use of a smartphone app. Of course, this negates the need for a clock since your smartphone will already have one anyway — but whoever said a clock needs to be useful?

To be fair, the display could conceivably be read by a determined human, since the QR format used is the tiny Micro QR M2 version that measures only 13×13 pixels. It’s capable of storing ten decimal digits, just enough to hold the date and time in mmddhhmmss format. The fixed part of the QR code is made of paper, while the variable part is formed through a grid of 90 white LEDs. The LEDs are mounted on a piece of prototype board along with a PIC 16F1504 microcontroller, two TM1637 LED drivers and a DS1307 real-time clock with battery backup.

If decoding QR codes is not your thing, or you simply haven’t got your smartphone on you, then the QR clock can also be set to a more human-readable format by adding a jumper. The time will then scroll across the LED screen in ordinary decimal format.

The video in the link is in Japanese, with no automatic translation available, but the build process is clearly shown and should be understandable even if you can’t follow the cheerful robotic narrator. We’ve seen a couple of QR-code based clocks before, some with an LCD screen and some with retro styling, but all of those use the larger standard QR code which definitely no human can decode visually. Or can you? Let us know in the comments!

Thanks for the tip, [J. Peterson]!

High Speed RC Jet Car Is A Harsh Teacher

Making machines go fast has always been a seemingly unavoidable impulse for humans. With the advent of radio control, it’s possible to get a taste of the rush without putting your life and too much money on the line. In the spirit of speed, [James Whomsley] strapped a jet turbine engine to an RC car, and learned some hard lessons along the way.

The car started as a four-wheel drive electric race car, but [James] removed most of the drive train components and mounted the jet turbine engine on a pair of 3D printed struts. Originally intended for large-scale RC planes, the little jet engine produces about 120 N of thrust. To allow the car to stop, [James] kept the drive shafts and connected them to a centrally mounted disk brake unit.

For the first high-speed test runs, James added a vacuum-formed shell and a pair of large vertical stabilizers for high-speed stability. On the 3rd test run at a local racetrack, the car got up to 190 km/h (118 MPH) before it veered off the track and crashed. Fortunately, the chassis and engine only sustained minor damage and were easy to repair.

James rebuilt the car with a lower engine to reduce the center of gravity and added an electronic gyro in an attempt to stabilize the car at high speed. Time ran out, and he wasn’t able to test the car before taking it to a high-speed RC event held on a runway. This led to another crash when the car again veered off the track after badly oscillating. After checking the onboard footage, [James] discovered the receiver had experienced a loss of signal, and an incorrect fail-safe setting made the engine go full throttle. After more tests, James also found that excessive play in the steering mechanism had caused the gyro to induce oscillations.

Although this car failed in the end, [James] intends to take the lessons learned into a new high-speed car build. [rctestflight] also did some testing with an EDF-powered RC car recently, and used a drone flight controller for high speed stability. This is not [James]’ first foray into speed machines, having previously experimented with a rocket plane.

Continue reading “High Speed RC Jet Car Is A Harsh Teacher”

Giant Keyboard Is Just Our Type

We like big keyboards and we cannot lie, and we’ve seen some pretty big keyboards over the years. But this one — this one is probably the biggest working board that anyone has ever seen. [RKade] and [Kristine] set out to make the world’s largest keyboard by Guinness standards – and at 16 feet long, you would think they would be a shoe-in for the world record. More on that later.

As you might have figured out, what’s happening here is that each giant key actuates what we hope is a Cherry-brand lever switch that is wired to the pads of a normal-sized keyboard PCB. Once they designed the layout, they determined that there were absolutely no existing commercial containers that, when inverted, would fit the desired dimensions, so they figured out that it would take 350 pieces of cardboard to make 70 5-sided keycaps and got to work.

Aside from the general awesomeness of this thing, we really like the custom buttons, which are mostly made of PVC components, 3D printed parts, and a bungee cord for the return spring.

[RKade] encountered a few problems with the frame build — mostly warped boards and shrunken holes where each of the 70 keys mount. After the thing was all wired up (cleverly, we might add, with Ethernet cable pairs), [RKade] rebuilt the entire frame out of three-layers of particle board.

By the way, Guinness rejected the application, citing that it must be an exact replica of an existing keyboard, and it must be built to commercial/professional standards. They also contradict themselves, returning no search results for biggest keyboard, but offer upon starting a world record application that there is a record-holding keyboard on file after all, and it is 8 ft (2.4 m) long. It’s not the concrete Russian keyboard, which is non-functional, but we wonder if it might be the Razer from CES 2018 that uses Kailh Big Switches.

Once the keyboard was up and running, [RKade] and [Kristine] duke it out over a game of Typing Attack, where the loser has to type all the lyrics to “Never Gonna Give You Up” on the giant keyboard. Check it out after the break.

Continue reading “Giant Keyboard Is Just Our Type”

A Raspberry Pi Handheld Computer You Might Want To Use

Amid the many wonderful form factors being explored by the makers of cyberdecks, there’s one that’s emerged which harks back to an earlier generation of portable computers: the handheld pad with a keyboard. These units are typically around the size of a hardback book, with the upper half being a screen and the lower a keyboard. The latest to come our way is from [Richard Sutherland], and it’s a very tidy pad computer indeed.

Inside the well-designed layered 3D printed case is the frequently-chosen Raspberry Pi 4, along with a PiSugar power supply board and 5,000 mAH battery and a 4.3″ touchscreen display. The keyboard has seen a lot of care and attention, featuring high-quality tactile switches that follow the Miryoku keyboard layout. He says it’s a thumb-typing keyboard, but anyone looking for more can either adapt the design to their liking or simply plug in an external board when faster typing is needed.

We like the pad computer trend as it offers useful computing power in a far more convenient format than a laptop, and we think this is a particularly nice one. It would be nice to see where people take this design, and who knows, we might give one a try for writing some Hackaday articles. If you’d like to see more pad computer goodness, we recently showed you one built in the shell of a classic Amstrad.

YouTube Like It’s 1970s France With This Minitel-VCR Mashup

When it’s not just sticking fake gears on things and calling it a day, the Steampunk look is pretty cool. Imagining technology in a world stuck with Victorian aesthetics is a neat idea, and one that translates to the look of other time periods — Fallout, anyone?

But what if you try to create a technological aesthetic based on a more recent and less celebrated time? That’s what [ghettobastler] has attempted with this somewhat bizarre Minitel-YouTube-VCR mash-up. Taking inspiration from a webcomic’s take on “Formicapunk,” modern tech based on the aesthetic of the wildly successful French videotex service of the 70s and 80s, the system uses a very cool Minitel 1B terminal and a Raspberry Pi 3.

A custom level-shifter for the Pi

With the help of a level-shifting circuit, the Mintel and the Pi talk over serial, allowing the terminal to be used as, well, a terminal for the Pi. Videos are downloaded from YouTube by the Pi, which sends the video to the VCR from its composite output, and controls the VCR with an IR LED that emulates the original remote. Come to think of it, just watch the video below — it’s probably easier than trying to describe it.

It’s weird, true, but we love the look of that Minitel terminal. Something about it just screams cyberdeck; if anyone has a spare one of these, get busy and put something together for our Cyberdeck Design Contest.

Continue reading “YouTube Like It’s 1970s France With This Minitel-VCR Mashup”