Robot Sunflower Follows The Sun

Real flowers do it, and even the Beatles did it. [Robo Hub] now has a plastic sunflower that tracks the sun using, of course, an Arduino. It may not qualify as a real robot, but it does mimic a real sunflower. The electronics aren’t earth-shattering, of course. An Arduino, a light sensor, and a servo motor are all you really need. But we enjoyed the whimsy and the artistic sensibility. This would be a great school project, for example. Interesting enough to get kids interested but not so hard as to be undoable. You can see a video of the ersatz flower below.

There are actually a pair of light sensors, as you might expect. That way you can determine which sensor is getting the most light. Obviously, these can’t be on-off sensors. They are, in fact, light-dependent resistors, so you get a nice analog reading.

Of course, you might not need an Arduino for this. A 555 driving a servo and a handful of discrete components could measure a bridge with the photoresistors and get the same effect. On the other hand, a microcontroller these days is inexpensive and versatile, so why not?

Usually, people tracking the sun are trying to get more energy. That doesn’t have to be any more complicated, though.

Continue reading “Robot Sunflower Follows The Sun”

Pour One Out For This Bottle-Playing Robot

If you have an iota of musicality, you’ve no doubt noticed that you can play music using glass bottles, especially if you have several of different sizes and fill them with varying levels of water. But what if you wanted to accompany yourself on the bottles? Well, then you’d need to build a bottle-playing robot.

First, [Jens Maker Adventures] wrote a song and condensed it down to eight notes. With a whole lot of tinkling with a butter knife against their collection of wine and other bottles, [Jens] was able to figure out the lowest note for a given bottle by filing it with water, and the highest note by emptying it out.

With the bottle notes selected, the original plan was to strike the bottles with sticks. As it turned out, 9g servos weren’t up to the task, so he went with solenoids instead. Using Boxes.py, he was able to parameterize a just-right bottle holder to allow for arranging the bottles in a circle and striking them from the inside, all while hiding the Arduino and the solenoid driver board. Be sure to check it out after the break.

Don’t have a bunch of bottles lying around? You can use an Arduino to play the glasses.

Continue reading “Pour One Out For This Bottle-Playing Robot”

Building A Robot Bartender For Amazon

[Audax] built an unassuming side table with a party trick. It could retract a glass inside and fill it up with bourbon. The nifty device gained plenty of positive attention online, leading to a commission from Amazon to build a new version. Thus, [Audax] set about a redesign to create an even more impressive drink delivery system. (Video, embedded below.)

The story is very much one of refinement and optimization, focusing on the challenges of building a customer-facing device. With just six weeks to create the new rig, [Audax] had to figure out how to make the machine sleeker and more compact for its debut at a special event. To achieve this, he eschewed the original frame design made of aluminium extrusion, going for a 3D-printed design instead. The wire nest of the original version was then subsequently eliminated by an outsourced PCB design. Other new features included a mobile app for control and an easier way to adjust pour size, for bigger or smaller drinks as desired. For ease of use, activation is via an Amazon Alexa Skill.

As is so often the way, a last minute hurdle came up, prompting [Audax] to fly to Seattle to troubleshoot the rig on site. Nevertheless, the automatic drink server came good in the end, and delivered on its promise. Video after the break.

Continue reading “Building A Robot Bartender For Amazon”

2023 Hackaday Supercon: The Rest Of The Talks

The 2023 Hackaday Superconference is only two weeks away, and we’re happy to announce the second half of the slate. As always, this is a great mix of well-known Hackaday faces, and folks we haven’t yet met. Whether they’re fixing up the Apollo Guidance Computer, building their own airplanes, trapping rubidium atoms, or teaching robots to sail, this is another super interesting round of talks.

Tickets are sold out, the badges are almost done, and we’re in the home stretch! We can smell the tacos from here. If you’re joining us, we hope you’re excited. If you’re not able to, we’ll stream as much as we can.

All that remains is the mystery of the keynote speaker.  Stay tuned! Continue reading “2023 Hackaday Supercon: The Rest Of The Talks”

Hackaday Superconference 2023: Workshops Announced, Get Tickets Now!

Last week, we announced just half of our fantastic slate of talks for Supercon. This week, we’re opening up the workshops. The workshops are small, hands-on opportunities to build something or learn something, lead by an expert in the field. Workshops sell out fast, so register now if you’re interested.

And stay tuned for the next round of talk reveals next week! And maybe even the badge reveal?

Andy Geppert
Weave Your Own Core Memory – Core16!

This workshop provides you with the opportunity to weave your own core memory! Using 16 authentic ferrite core bits and 16 RGB LEDs, you can play tic-tac-toe, paint with a magnetic stylus, and create your own interactive experiences. Andy Geppert will guide you through the assembly of Core16. The Core16 kit is the little brother of the Core64 kit. The smaller Core16 kit reduces assembly time/cost, enabling more people to experience the challenge and satisfaction of creating their own core memory.

Travis Foss
Presented by DigiKey: Introduction and expansion of the XRP Robotics Platform

In this workshop you will be able to get your hands on the new XRP (Experiential Robotics Platform) and take the basics a step further with a few additional parts. Along with the base kit, participants will have the opportunity to install a RGB twist encoder, a LCD screen, and a buzzer to create a setup that will allow the user to choose a program onboard without being tethered to a computer.

Becky Button
How to Make a Custom Guitar Pedal

Musical effects are for everybody! Join this workshop and get hands-on experience assembling and programming your musical effects pedals. Walk away from this workshop with the capability of integrating multiple musical effects into 1 device and reprogramming the pedal with any effects you want!

Daniel Lindmark
From Zero to Git: 1 Hour Hardware Git Bootcamp

In this workshop, you will learn all about basic git operations, including how to download and install the client, setting up a repo, synching changes, and much more. Learn how to navigate common issues and take advantage of a live FAQ during the workshop.

Jazmin Hernandez
Solder and Learn How to Use Your Own Anti-Skimmer (HunterCat)

Have you ever been vulnerable to data theft? Do you fear using your bank card in ATMs or even in a restaurant? Protect your information from potential skimmers in this workshop while you learn to solder some components of your anti-skimmer/magnetic stripe clone detectors. By the end of the workshop, you’ll have a device to insert before using your bank card to check for potential issues.

Matt Venn
Tiny Tapeout – Demystifying Microchip Design and Manufacture

In this workshop, you can design and manufacture your own chip on an ASIC. You will learn the basics of digital logic, how semiconductors are made, the skills needed to use an online digital design tool for simulation, and how to create the GDS file for manufacturing. Participants will also have the option to submit their designs to be manufactured as part of the Tiny Tapeout project.

You can’t attend the workshops without attending Supercon, so get your tickets!  (As we write, there are only ten more…)

 

Hackaday Podcast 239: Overclocking, Oscilloscopes, And Oh No! SMD Out Of Stock!

Elliot Williams and Al Williams got together again to discuss the best of Hackaday for a week, and you’re invited. This week, the guys were into the Raspberry Pi 5, CNC soldering, signal processing, and plasma cutting. There are dangerous power supplies and a custom 11-bit CPU.

Of course, there are a few Halloween projects that would fit in perfectly with the upcoming Halloween contest (the deadline is the end of this month; you still have time). OpenSCAD is about to get a lot faster, and a $20 oscilloscope might not be a toy after all. They wrap up by talking about Tom Nardi’s latest hardware conversion of DIP parts to SMD and how TVs were made behind the Iron Curtain.

Did you miss a story? Check out the links below. As always, tell us what you think about this episode in the comments!

Go ahead and download it!

Continue reading “Hackaday Podcast 239: Overclocking, Oscilloscopes, And Oh No! SMD Out Of Stock!”

Just When You Think Everything In Robotic Combat Has Been Tried Before…

Since the first combat robots emerged around three decades ago, it seems as though every conceivable configuration has been tried at some point or other. Whether it’s a two-wheeled wedgebot, a walker, a four-wheeled flip-bot, or whatever, someone’s already been there. But how about a self-righting taco with a novel two-wheel drive system? It’s called Taco Tuesday, its team lead [Carter Hurd] has sent us the video below the break, and it’s worth a second look because the technique might find a place outside the arena.

The robot with [Carter] sitting behind it

So what exactly is novel about this bot? It has a single big fat wheel near the front in a longitudinal direction, and a larger slimmer one at the back in a transverse direction. The former wheel propels it around the arena while the latter wheel acts as a rear-wheel steering system, allowing it to pivot round and face an attacker very quickly indeed.

It’s this maneuverability which we think could find an application in other machines, though the same problem they have of sideways friction on that rear wheel would need to be overcome.

The video follows the bot through a BattleBots competition in Las Vegas, and shows us some of the damage they receive in combat. The drive system needs a bit more refinement, but this outing certainly proves it has plenty of potential.

Some of us here at Hackaday have a bit of a soft spot for fighting robots.

Continue reading “Just When You Think Everything In Robotic Combat Has Been Tried Before…”