Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar

Although we think of air-to-air radar as a relatively modern invention, it first made its appearance in WWII. Some late war fighters featured the AN/APS-13 Tail Warning Radar to alert the pilot when an enemy fighter was on his tail. In [WWII US Bombers]’ fascinating video we get a deep dive into this fascinating piece of tech that likely saved many allied pilots’ lives.

Fitted to aircraft like the P-51 Mustang and P-47 Thunderbolt, the AN/APS-13 warns the pilot with a light or bell if the aircraft comes within 800 yards from his rear. The system consisted of a 3-element Yagi antenna on the vertical stabilizer, a 410 Mhz transceiver in the fuselage, and a simple control panel with a warning light and bell in the cockpit.

In a dogfight, this allows the pilot to focus on what’s in front of him, as well as helping him determine if he has gotten rid of a pursuer. Since it could not identify the source of the reflection, it would also trigger on friendly aircraft, jettisoned wing tanks, passing flak, and the ground. This last part ended up being useful for safely descending through low-altitude clouds.

This little side effect turned out to have very significant consequences. The nuclear bombs used on Hiroshima and Nagasaki each carried four radar altimeters derived from the AN/APS-13 system.

Continue reading “Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar”

Hackaday Links Column Banner

Hackaday Links: October 13, 2024

So far, food for astronauts hasn’t exactly been haute cuisine. Freeze-dried cereal cubes, squeezable tubes filled with what amounts to baby food, and meals reconstituted with water from a fuel cell don’t seem like meals to write home about. And from the sound of research into turning asteroids into astronaut food, things aren’t going to get better with space food anytime soon. The work comes from Western University in Canada and proposes that carbonaceous asteroids like the recently explored Bennu be converted into edible biomass by bacteria. The exact bugs go unmentioned, but when fed simulated asteroid bits are said to produce a material similar in texture and appearance to a “caramel milkshake.” Having grown hundreds of liters of bacterial cultures in the lab, we agree that liquid cultures spun down in a centrifuge look tasty, but if the smell is any indication, the taste probably won’t live up to expectations. Still, when a 500-meter-wide chunk of asteroid can produce enough nutritionally complete food to sustain between 600 and 17,000 astronauts for a year without having to ship it up the gravity well, concessions will likely be made. We expect that this won’t apply to the nascent space tourism industry, which for the foreseeable future will probably build its customer base on deep-pocketed thrill-seekers, a group that’s not known for its ability to compromise on creature comforts.

Continue reading “Hackaday Links: October 13, 2024”

Thinkpad 13 Gets NVMe Support With Three Jumpers

Hardware restrictions can be unreasonable, and at times, it can be downright puzzling just how arbitrary they are. Such is the case with the Lenovo ThinkPad 13 — it’s got a M.2 M-key socket, yet somehow only supports SATA SSDs in it, despite the CPU being new enough to support both SATA and NVMe effortlessly. [treble] got one of those laptops from a recycler, and decided to figure out just what this laptop’s deal is.

Armed with schematics, she and her friend looked at the M.2 implementation. The slot’s schematic sure looked ready to support either kind of drive, a surprising find. Here’s the catch — Lenovo only populated components for SATA drive support. All you need to switch from SATA to NVMe support is three magnet wire jumpers, or zero-ohm 0402 resistors, and voila; you can now use the significantly cheaper kind of M.2 drives in your ThinkPad.

All is documented, and [treble] even mentions that you could increase the link speed by adding more PCIe lane capacitors that Lenovo, again, left unsoldered. UEFI already has the modules needed to boot from NVMe, too – it’s an outright upgrade for your laptop with just a soldering iron’s touch required, and a reminder that proprietary tech will screw you over for entirely arbitrary reasons. Now, it’s not just laptops you can upgrade with a few resistors — same goes for certain electric cars.

Reverse-Engineering A Shahed-136 Drone Air Data Computer

Top of the air data computer module, with pressure sensors, RS232 driver and DC-DC converter visible. (Credit: Le Labo de Michel, YouTube)

An air data computer (ADC) is a crucial part of an avionics package that can calculate the altitude, vertical speed, air speed and more from pressure (via pitot tubes) and temperature inputs. When your airplane is a one-way attack drone like Iran’s Shahed-136, you obviously need an ADC as well, but have to focus on making it both cheap and circumvent a myriad of sanctions. As [Michel] recently found out while reverse-engineering one of these ADCs. Courtesy of the Russo-Ukrainian war, hundreds of these Shahed drones are being destroyed every month, with some making it back down again intact enough for some parts to end up on EBay.

The overall design as captured in the schematic is rather straightforward, with the component choice probably being the most notable, as it uses an STM32G071 MCU and Analog Devices ADM3232 RS-232 driver, in addition to the two pressure sensors (by Silicon Microstructures Inc., now owned by TE). The DC-DC converter is a Mornsun URB24055-6WR3.

With the board in working condition, [Michel] hooks it up to a test setup to see the output on the serial interface when applying different pressures to the pressure sensor inputs. This results in a lot of ASCII data being output, all containing different values that were calculated by the firmware on the STM32 MCU. In the drone this data would then be used by the flight computer to make adjustments. Overall it’s a rather basic design that doesn’t seem to have a dedicated temperature sensor either, though [Michel] is still analyzing some details. A firmware dump would of course be rather fascinating as well.

Continue reading “Reverse-Engineering A Shahed-136 Drone Air Data Computer”

A Solar-Powered Wristwatch With An ATtiny13

Wristwatches come in many shapes, sizes, and types, but most still have at least one thing in common: they feature a battery that needs to be swapped or recharged somewhere been every other day and every few years. A rare few integrate a solar panel that keeps the internal battery at least somewhat topped up, as environmental light permits.

This “Perpetual” wristwatch designed by [Serhii Trush] aims to keep digitally ticking along using nothing but the integrated photodiodes, a rechargeable LIR2430 cell, and a power-sipping face that uses one LED for each hour of the day.

The face of the perpetual wristwatch. (Credit: Serhii Trush)
The face of the perpetual wristwatch. (Credit: Serhii Trush)

The wristwatch’s operation is demonstrated in the linked video (in Ukrainian, auto-generated subtitles available): to read out the current time, the button in the center is pressed, which first shows the hour, then the minutes (in 5 minute intervals).

After this the ATtiny13 MCU goes back to sleep, briefly waking up every 0.5 seconds to update the time, which explains why there’s no RTC crystal. The 12 BPW34S photodiodes are enough to provide 2 mA at 0.5 V in full sunlight, which together keep the LIR2430 cell charged via a Zener diode.

As far as minimalistic yet practical designs go, this one is pretty hard to beat. If you wish to make your own, all of the design files and firmware are provided on the GitHub page.

Although we certainly do like the exposed components, it would be interesting to see this technique paired with the PCB watch face we covered recently.

Continue reading “A Solar-Powered Wristwatch With An ATtiny13”

Gentoo Linux, Now A Bit Less For The 1337

Among users of Linux distributions there’s a curious one-upmanship, depending on how esoteric or hardcore  your distro is. Ubuntu users have little shame, while at the other end if you followed Linux From Scratch or better still hand-compiled the code and carved it onto the raw silicon with a tiny chisel, you’re at the top of the tree*. Jokes aside though, it’s fair to say that if you were running the Gentoo distribution you were something of a hardcore user, because its source-only nature meant that everything had to be compiled to your liking. We’re using the past tense here though, because in a surprise announcement, the distro has revealed that it will henceforth also be available as a set of precompiled binary packages.

There may be readers with long and flowing neckbeards who will decry this moment as the Beginning of the End, but while it does signal a major departure for the distro if it means that more people are spurred to take their Linux usage further and experiment with Gentoo, this can never be a bad thing. Gentoo has been on the list for a future Jenny’s Daily Drivers OS review piece, and while we’re probably going to stick with source-only when we do it, it’s undeniable that there will remain a temptation to simply download the binaries.

Meanwhile this has been written on a machine running Manjaro, or Arch-for-cowards as we like to call it, something that maybe confers middle-ranking bragging rights. Read a personal tale of taking off those Linux training wheels.

* Used a magnifying glass? You’re just not cutting it!