TV Broadcasts From Outer Space

According to ARISS (Amateur Radio on the International Space Station), the ISS will be sending us images using slow-scan TV on April 11th in honor of Russian cosmonaut Yuri Gagarin’s birthday. Tune in and you’ll get to see 12 different commemorative images from space, and of course bragging rights that you directly received them with your radio setup.

For those who aren’t Ham radio types, slow-scan TV (SSTV) is a radio mode where the pixels in an image are sent by encoding the brightness and/or color as a tone, a lot like a modem, fax machine, or the data cassette tapes of yore.

The ISS uses PD-180 which is a color mode where each pixel’s red, green, and blue values are encoded in a pitch between 1500 and 2300 Hz. Each image takes just over three minutes to transmit, meaning you’ll have to track the ISS pretty well as it travels across the sky. But don’t fret, they send each message for around an hour, so you have a good chance to receive it. (We’ll be the first to admit that a frame rate of one frame in 187 seconds isn’t really “TV”, but that’s what they call it.)

SSTV’s use in the space program goes back even before the moon landing, but with modern software-defined radio setups, it all becomes a lot more convenient to receive. The ISS folks do this periodically as a service to the amateur radio community, so it’s a good time to try out your chops.

We’ve covered ARISS before, but Yuri’s birthday is always a good reason to celebrate the folks out there. And if you need a reminder of when to look up, this hack right here has you covered.

If you do receive some images, you can upload them to the ARISS Gallery.  Or you can just hit refresh to see them as others post them up.

Nerdalert: German TV Producers’ Amazing Vectorscope Animations

German weekend late-night comedy show “Neo Magazin Royale” has a bunch of super-nerds behind the screens in the production studio. This is apparently what they do when they’re (not) working: making test screens that render as multiple animations on their test equipment.

While others out there are limited to displaying cool graphics on oscilloscopes, these guys have vectorscopes and waveformer monitors. A vectorscope is like an oscilloscope in X-Y mode, but with one screen that decodes the color space and one screen for the audio (in stereo). A waveform monitor that plots out the brightness levels of a test image. Normal studio techs use these to calibrate their colors, brightness, and audio levels.

Apparently, these guys programmed a custom test screen that would: a) encode a small animation of a 20-sided die spinning around the show’s logo in the color channel b) encode the show’s logo in the left and right sound channels, and c) their production company’s logo in the screen’s brightness.

At the end of the video, the director Patrick (in the glasses) admits that they’ve spent about three months working on this project and everyone starts laughing. “And who gets anything from this? Nobody!” says the show’s host.

One way to rectify that, though. Post the source code!

Use The Force, Luke…to Turn Off Your TV

Have you ever wanted to turn on or off your TV just by thinking about it? We love this hack mainly because it uses an old Star Wars Force Trainer game. You can still buy them for about $40-$80 USD online. This cool little toy was introduced in 2009 and uses a headset with electrodes, and an electroencephalography (EEG) chip. It transmits the EEG data to control a fan that blows air into a tube to “levitate” a ball, all the while being coached on by the voice of Yoda. (Geesh! Kids these days have the best toys!)

[Tinkernut] started by cracking open the headset, where he found the EEG chip made by a company called NeuroSky (talk about a frightening sounding company name). The PCB designer was kind enough to label the Tx/Rx pins on the board, so hooking it up to an Arduino was a snap. After scavenging an IR LED and receiver from an old VCR, the hardware was just about done. After a bit of coding, you can now control your TV by using the force! (Ok, by ‘force’ I mean brainwaves.)  Video after the break.

Note: [Tinkernut’s] blog page should have more information available soon. In the meantime if you can find his Arduino Brain Library on github.

This isn’t the first EEG to TV interface we’ve featured. Way back in 2010 we featured a project that used an Emotiv EPOC EEG headset to turn on and off a TV. But at $400 for the headset, it was a little too expensive for the average Jedi.

Continue reading “Use The Force, Luke…to Turn Off Your TV”

Calculator Remote with Launchpad

Calculator + MSP430 + IR LED = TV Remote?

Eschewing the store-bought solution, [Stefan] managed to build a TV remote out of an old calculator. The brains of the calculator were discarded and replaced with an MSP430, leaving only the button matrix and enclosure. Rather than look it up, he successfully mapped the matrix manually before getting stumped with the infrared code timings. Some research pointed him to a peculiarity with Samsung IR codes and with help from an open source remote control library he got it working.

When the range was too limited to satisfy him he added a booster circuit and an LED driver which he snapped off the top of an old remote; now it works from 30 feet away. Some electrical tape and hot glue later and it all fit back into the original case.

It cannot take photos or play Super Smash Brothers, but it does what a remote needs to do: browses channels in the guide, control volume, and turn the TV on or off. Considering that all this calculator was built to do was boring basic arithmetic, it is a procrastination-enabling upgrade.

See the video after the break for some smiles.

Continue reading “Calculator + MSP430 + IR LED = TV Remote?”

amazonfiretv

Amazon Fire TV Update Bricks Hacked Devices

The Amazon Fire TV is Amazon’s answer to all of the other streaming media devices on the market today. Amazon is reportedly selling these devices at cost, making very little off of the hardware sales. Instead, they are relying on the fact that most users will rent or purchase digital content on these boxes, and they can make more money in the long run this way. In fact, the device does not allow users to download content directly from the Google Play store, or even play media via USB disk. This makes it more likely that you will purchase content though Amazon’s own channels.

We’re hackers. We like to make things do what they were never intended to do. We like to add functionality. We want to customize, upgrade, and break our devices. It’s fun for us. It’s no surprise that hackers have been jail breaking these devices to see what else they are capable of. A side effect of these hacks is that content can be downloaded directly from Google Play. USB playback can also be enabled. This makes the device more useful to the consumer, but obviously is not in line with Amazon’s business strategy.

Amazon’s response to these hacks was to release a firmware update that will brick the device if it discovers that it has been rooted. It also will not allow a hacker to downgrade the firmware to an older version, since this would of course remove the root detection features.

This probably doesn’t come as a surprise to most of us. We’ve seen this type of thing for years with mobile phones. The iPhone has been locked to the Apple Store since the first generation, but the first iPhone was jailbroken just days after its initial release. Then there was the PlayStation 3 “downgrade” fiasco that resulted in hacks to restore the functionality. It seems that hackers and corporations are forever destined to disagree on who actually owns the hardware and what ownership really means. We’re locked in an epic game of cat and mouse, but usually the hackers seem to triumph in the end.

The guts of a Z80 MicroTV Clock

A Z80 Micro TV Clock

As an adventure in computer history, [Len] built up a clock. The Z80 Micro TV Clock brings together a homebrew computer and three Micro TVs into a rather large timepiece.

The computer powering the clock runs the CP/M operating system. This OS was eventually released as open source software, and a variety of homebrew computer projects have implemented it. This clock is based on an existing breadboard CP/M machine, which includes schematics and software.

With an OS running, [Len] got a text editor and C compiler working. Now custom software could be written for the device. Software was written to interact with a Maxim DS12885 Real Time Clock, which keeps the time, and to output the time to the display controllers.

The Micro TVs in this build are Sony Watchman displays featuring a 2″ CRT. The devices had no video input port, so [Len] ripped them open and started poking around. The NTSC signal was found by probing the board and looking for the right waveform.

To drive the TVs from CP/M, a custom video driver was built. This uses three relatively modern ATmega328P microcontrollers and the arduino-tvout library. All of these components are brought together on a stand made from wood and copper tubing, making it a functional as a desk top clock

Mutant Kitchen TV Computer

In need of a kitchen entertainment system, [BoaSoft] headed to the parts bin and produced a project that can easily be called a mutant. That being said, we love the results!

Here’s the link to the original Russian language post. If your Russian is a bit rusty here’s a really awful machine translation. So let’s see if we can decipher this hack.

Sounds like [BoaSoft] had a broken Acer laptop on hand. Problem was the laptop can’t play over-the-air television (and similarly, a television can’t surf the net). The solution was to figure out how to utilized a TV tuner of unknown origin, combine that with the laptop and a computer monitor, then add back all the user interface you’d expect from an entertainment device.

The board shown in the first post of the thread is familiar to us. It seems to be based on the IgorPlug board which is a hack that goes waaaay back. This allows for the use of an IR media center remote and those input signals are easy to map to functions. The computer runs Windows Media Center which is already optimized for remote control but can use a wireless keyboard and mouse when more computer-centric functions are necessary.

With all on track the rest of the hack deals with hacking together a case. The laptop’s original body was ditched for some extended sides for the back of the monitor. [BoaSoft] did a great job of installing all the necessary ports in these extensions. Once in the kitchen everything is nice and neat and should stand the test of time.

[Thanks Dmitry]