Powering Your F-16 With An Arduino

What do you do when you have an F-16 sitting around, and want to have some blinking navigation lights? We know of exactly one way to blink a light, and apparently so does [Dr. Craig Hollabaugh]. When asked to help restore an F-16 for the National Museum of Nuclear Science and History in New Mexico, [Craig] pulled out the only tool that should ever be used to blink navigation lights on an air superiority fighter.

[Craig]’s friend was working on getting an F-16 restored for the Nuclear Museum, and like anyone with sufficient curiosity, asked how hard it would be to get the navigation lights working again. [Craig] figured an Arduino would do the trick, and with the addition of a shield loaded up with a few mosfets, the nav lights on an old F-16 would come to life once again.

The board doesn’t just blink lights on and off. Since [Craig] is using LEDs, the isn’t the nice dimming glow you’d see turning a normal incandescent light off and on repeatedly. To emulate that, [Craig] is copying Newton’s law of cooling with a PWM pin. The results are fantastic – at the unveiling with both New Mexico senators and a Brigadier General, everything went off without a hitch. You can see the unveiling video below, along with a few videos from [Craig]’s build log.

Continue reading “Powering Your F-16 With An Arduino”

Phoenard, A Prototyping Gadget

The Hackaday Prize party wasn’t just about the five finalists; actually, there were more THP entries in attendance – All Yarns Are Beautiful, OpenExposer, M.A.R.S., a 3D scanner, and a few more that I’m forgetting – than actual finalists. In addition, a number of people brought projects that had never seen the light of day, like [Ralf] and [Pamungkas]’ Phoenard.

Phoenard is a Kickstarter project the guys launched at the prize party, something they could attend as a little side trip after manning the ‘maker’ part of the Atmel booth at Electronica. They’ve come up with a tiny handheld device that can only be described as a ‘gadget’. It has a touchscreen, a battery, an MegaAVR, a few connectors, and not much else. What makes this project cool is how they’re running their applications. A bootloader sits on the AVR, but all the applications – everything from a GSM phone to an MP3 player – lives on a microSD card.

The Phoenard guys have come up with a few expansion modules for Bluetooth LE, GSM, GPS, and all the usual cool modules. Plugging one of these modules into the back of the device adds capability, and if that isn’t enough, there’s an old 30-pin iPhone connector on the bottom ready to accept a prototyping board.

Video of these guys below.

Continue reading “Phoenard, A Prototyping Gadget”

A Z80 Micro TV Clock

As an adventure in computer history, [Len] built up a clock. The Z80 Micro TV Clock brings together a homebrew computer and three Micro TVs into a rather large timepiece.

The computer powering the clock runs the CP/M operating system. This OS was eventually released as open source software, and a variety of homebrew computer projects have implemented it. This clock is based on an existing breadboard CP/M machine, which includes schematics and software.

With an OS running, [Len] got a text editor and C compiler working. Now custom software could be written for the device. Software was written to interact with a Maxim DS12885 Real Time Clock, which keeps the time, and to output the time to the display controllers.

The Micro TVs in this build are Sony Watchman displays featuring a 2″ CRT. The devices had no video input port, so [Len] ripped them open and started poking around. The NTSC signal was found by probing the board and looking for the right waveform.

To drive the TVs from CP/M, a custom video driver was built. This uses three relatively modern ATmega328P microcontrollers and the arduino-tvout library. All of these components are brought together on a stand made from wood and copper tubing, making it a functional as a desk top clock

Photographing a Display Controller Die

Who doesn’t like integrated circuit porn? After pulling a PCD8544 display controller from an old Nokia phone, [whitequark] disrobed it and took the first public die shot.

As we’ve seen in the past, removing a die from its packaging can be a challenge. It typically involves nasty things like boiling acid. Like many display controllers, the PCD8544 isn’t fully encapsulated in a package. Instead, it is epoxied to a glass substrate.

Removing the glass proved to be difficult. [whitequark] tried a hot plate, a hot air gun, sulphuric acid, and sodium hydroxide with no success. Then the heat was turned up using MAPP gas, which burned the epoxy away.

After some cleaning with isopropanol, the die was ready for its photoshoot. This was done using a standard 30 mm macro lens. Photo processing was done in darktable, an open source photography tool and RAW processor.

[whitequark] plans to take closer photos in the future using more powerful magnification. These high resolution die photos can be useful for a number of things, including finding fake chips and reverse engineering retro hardware.

Surviving the Hackaday Prize Party

What a week it has been. I’m in Munich, Germany along with [Brian], [Jasmine], [Ben], [Alek], and the rest of the crew who helped plan and guide the 2014 Hackaday Prize. If you somehow missed it, we announce the rank order of the finalists. It was SatNOGS that claimed the Grand Prize, congratulations!

We have a ton of content headed your way, but to be honest there’s going to be a bit of “recovery lag” before that hits the front page. We spent the entire day at Technikum in the Munich Kalturfabrik. It was originally some sort of factory complex (having to do with potato processing) which has since been turned into co-working spaces, restaurants, and performing arts venues. We felt right at home in the post-industrial, brightly muraled maze of buildings.

The official activities started with the Embedded Hardware Workshops which were packed! The previously assured “robust” WiFi immediately, and repeatedly, went down. Fortunately hackers being hackers everyone pooled their local copies onto one SD card and passed it around. We’ve segregated that piece of hardware in an evidence bag for future testing.

We pushed back the closing of the workshops by about 40 minutes since everyone was having fun. This marginally outraged the company who was handling furniture and food as we weren’t following the plan. They were pleasant enough about the issue but for me it was an interesting peek at the difference in cultures. During the switch we had lightning talks which I found both enthusiastic and interesting. We then moved to the major presentations of the night. [Jeroen Domburg] aka [Sprite_TM] gave a stunning presentation about reverse engineering the ridiculously overpowered microcontroller on a special lighted keyboard. We’ll surely have a standalone post about it. We then closed with a recap of The Hackaday Prize and the naming of the winners. That too will have its own feature.

DSC_0095After handing over the trophy, and taking a few photos the writers all rushed to the downstairs “backstage” area. I had previously written the announcement post and we spent some time getting the word out, first to all the finalists, then to the sites that are close friends, and finally started pushing the news on social media. All work and no play? Forget about it. The party was raging and the food and drinks were fantastic. They were, however, far outshined by the conversations with interesting people to be found at every turn. I spoke with people who had driven in just for the event from France, Austria, and of course all over Germany.

The venue was packed up starting around Midnight. You know it’s a great time when the crowd hangs out in the cold for another 40 minutes afterward. The point of the story? Any chance you have to spend time with the great people who make up the Hackaday community is a chance to jump at. Where to next?

Video Spiel Kultur

Somehow, and don’t ask us how, the venue we chose for the Hackaday Prize party was perfect for Hackaday-related shenanigans. There was a Hackerspace right around the corner, a computer history museum in a warehouse nearby, and an amazing video game archive barely 100 meters away from our venue.

The VideoGamingArchive is an amazing collection of video games from the era where video games came in boxes with real manuals, and you needed to be sure you bought the game compatible with your system. Inside, one wall is dedicated to the old cardboard computer boxes, indexed partly by system and partly by how cool they look, while the other wall was dedicated to games from the previous five generations of consoles.

[Nils] was kind enough to give me a tour. You can check that video out below, with some more pics below that. If you’re wondering, yes, that is a sealed copy of Chrono Trigger, and no, I have no idea what it’s worth.

Continue reading “Video Spiel Kultur”

Hacklet 22 – Retro Console Projects

Everyone loves arcade games, and it didn’t take long for designers to figure out that people would love to take the fun home. The home gaming console market has been around for decades. Through the early days of battery-powered pong style consoles through Atari and the video game crash of the early 80’s, to the late 8 and 16 bit era spearheaded by The Nintendo Entertainment System and The Sega Master System and beyond, consoles have become a staple of the hacker home. This week’s Hacklet features some of the best retro console projects from Hackaday.io!

52001We start with [ThunderSqueak] saving the world with her Atari 5200 Custom Controller Build. For those who don’t know, the Atari 5200 “Super System” was an 8 bit system ahead of its time. The 5200 was also saddled with on of the worst controller designs ever. The buttons would stop responding after a few hours of game play. With 17 buttons, (including a full number pad), that was a pretty major design flaw! [ThunderSqueak] hacked a cheap commercial fighting game stick to make it work with the 5200. 12 individual buttons were wired in a matrix to replace the telephone style keys on the original 5200 controller. Atari’s non-centering analog stick was converted over to a standard 4 switch arcade style stick. [ThunderSqueak] did leave the original pots accessible in the bottom of the enclosure for centering adjustments. Many 5200 games work great with the new setup.

 

snes[DackR] is bringing back the glory days of Nintendo with Super Famicade, a homebrew 4 SNES arcade system inspired by Nintendo’s Super System. Nintendo’s original Super System played several customized versions of games which were available on the Super Nintendo Entertainment System (SNES). [DackR] is building his own with parts from four SNES consoles. He’s also adding a few features, like a touch screen, video overlay, and enhanced RGB.

He’s going to add custom memory monitoring hardware, which will allow him to check how many lives a player has left and handle coin operation, all without the original Super System Hardware. If you’re curious what the original Super Systems looked like, check out Hackaday’s Tokyo Speedrun video.You might just catch a glimpse of one!

rgb[Bentendo64] is improving on the past with RGB For ‘Murica. European systems have enjoyed the higher quality afforded by separate red, green and blue video lines for decades. North American gamers, however were stuck in the composite or S-Video realm until shortly before the HDTV age. [Bentendo64] had an old hotel CRT based monitor, and decided to hack an RGB input. After opening up the back of the set, he removed the yolk board and added direct inputs to the video amplifiers. We’re not sure if this mod will work with every CRT, but it can’t hurt to try! Just be sure to discharge those high voltage capacitors before wrenching on these old video systems. Even if a set has been unplugged for days, the caps can give a seriously painful (and dangerous) shock!

snes2[Ingo S] is also working to improve the SNES with SNES AmbiPak, a mod which brings ambient lighting and “rumble pack” controller feedback to the vintage Super Nintendo. [Ingo S] used the popular SNES9X emulator to figure out where game data is stored while the SNES is running. His proof of concept was the original F-ZERO SNES game. [Ingo S] found that Every time the player’s car hits the wall, the system would perform a write on address 3E:0C23. All he would need to do is monitor that address on the real hardware, and rumble the controller on a write. The real hardware proved to be a bit harder to work with though. Even these “slow” vintage systems clock their ram at around 3MHz, way too fast for an Arduino to catch a bus access.  [Ingo S] is solving that problem with a Xilinx XC9572 Complex Programmable Logic Device (CPLD). CPLDs can be thought of as little brothers to Field Programmable Gate Arras (FPGAs). Even though they generally have less “room” for logic inside, CPLDs run plenty fast for decoding memory addresses.  With this change, [Ingo S] is back on track to building his SNES rumble pack!

It feels like we just got started – but we’re already out of space for this week’s Hacklet! As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!