Raytracing makes the design easier, but the building is still as tricky as ever.

A 10″ Telescope, Because You Only Live Once

Why build a telescope? YOLO, as the kids say. Having decided that, one must decide what type of far-seer one will construct. For his 10″ reflector, [Carl Anderson] once again said “Yolo”— this time not as a slogan, but in reference to a little-known type of reflecting telescope.

Telescope or sci-fi laser gun? YOLO, just try it.

The Yolo-pattern telescope was proposed by [Art Leonard] back in the 1960s, and was apparently named for a county in California. It differs from the standard Newtonian reflector in that it uses two concave spherical mirrors of very long radius to produce a light path with no obstructions. (This differs from the similar Schiefspiegler that uses a convex secondary.) The Yolo never caught on, in part because of the need to stretch the primary mirror in a warping rig to correct for coma and astigmatism.

[Carl] doesn’t bother with that, instead using modern techniques to precisely calculate and grind the required toric profile into the mirror. Grinding and polishing was done on motorized jigs [Carl] built, save for the very final polishing. (A quick demo video of the polishing machine is embedded below.)

The body of the telescope is a wooden truss, sheathed in plywood. Three-point mirror mounts alowed for the final adjustment. [Carl] seems to prefer observing by eye to astrophotography, as there are no photos through the telescope. Of course, an astrophotographer probably would not have built an F/15 (yes, fifteen) telescope to begin with. The view through the eyepiece on the rear end must be astounding.

If you’re inspired to spend your one life scratch-building a telescope, but want something more conventional, check out this comprehensive guide. You can go bit more modern with 3D printed parts, but you probably don’t want to try spin-casting resin mirrors. Or maybe you do: YOLO!

Continue reading “A 10″ Telescope, Because You Only Live Once”

Making A Laptop With A Mechanical Keyboard

A laptop is one of the greatest tools at the disposal of a hacker. They come in all manner of shapes and sizes with all manner of features. But perhaps the greatest limit held by all laptops is their chiclet keyboard. While certainly serviceable, a proper mechanical keyboard will always reign supreme, which is why [flurples] built a laptop around a mechanical keyboard. 

Such a keyboard could not fit inside any normal laptop, so a custom machined case was in order. The starting point was a standard Framework Laptop 13. Its open source documentation certainly helped the project, but numerous parts such as the audio board and fingerprint sensor are not documented making for a long and tedious process. But the resulting machined aluminum case looks at least as good as a stock Framework chassis, all be it, quite a bit thicker.

Continue reading “Making A Laptop With A Mechanical Keyboard”

How To Have A Medium Format Camera Without Breaking The Bank

For most people, experimentation with film photography comes in the form of the 35 mm format. Its ubiquity in snapshot photography means cameras are readily available at all levels, and the film offers a decent compromise between resolution and number of shots per dollar spent.

For those who wish to take their film photography further there’s the so-called medium format 120 roll film, but here opting for a higher-end camera can become expensive. Fortunately [Javier Doroteo] is here with a 3D printed medium format camera designed to use lenses intended for the Mamiya Press cameras, and from where we’re sitting it looks very nicely designed indeed.

All the files can be found on Printables along with a list of the other parts required. It’s made simple by the Mamiya lenses incorporating the shutter, but there’s still a lot of attention that has been paid to the back of the camera. This is the third version of the design and it shows, details such as the film holder and light proofing are well thought out.

Photography is so often a world in which collecting the latest kit is seen as more important than the photographs themselves, so we like and encourage camera hackers as a reaction to all that. If you’d like to see another medium format camera, this certainly isn’t the first we’ve brought you.

2025 Hackaday Component Abuse Challenge: Let The Games Begin!

In theory, all parts are ideal and do just exactly what they say on the box. In practice, everything has its limits, most components have non-ideal characteristics, and you can even turn most parts’ functionality upside down.

The Component Abuse Challenge celebrates the use of LEDs as photosensors, capacitors as microphones, and resistors as heat sources. If you’re using parts for purposes that simply aren’t on the label, or getting away with pushing them to their absolute maximum ratings or beyond, this is the contest for you.

If you committed these sins against engineering out of need, DigiKey wants to help you out. They’ve probably got the right part, and they’re providing us with three $150 gift certificates to give out to the top projects. (If you’re hacking just for fun, well, you’re still in the running.)

This is the contest where the number one rule is that you must break the rules, and the project has to work anyway. You’ve got eight weeks, until Nov 11th. Open up a project over at Hackaday.io, pull down the menu to enter in the contest, and let the parts know no mercy!

Honorable Mention Categories:

We’ve come up with a few honorable mention categories to get your ideas flowing. You don’t have to fit into one of these boxes to enter, but we’ll be picking our favorites in these four categories for a shout-out when we reveal the winners.

  • Bizarro World: There is a duality in almost every component out there. Speakers are microphones, LEDs are light sensors, and peltier coolers generate electricity. Turn the parts upside down and show us what they can do.
  • Side Effects: Most of the time, you’re sad when a part’s spec varies with temperature. Turn those lemons into lemonade, or better yet, thermometers.
  • Out of Spec: How hard can you push that MOSFET before it lets go of the magic smoke? Show us your project dancing on the edge of the abyss and surviving.
  • Junk Box Substitutions: What you really needed was an igniter coil. You used an eighth-watt resistor, and got it hot enough to catch the rocket motor on fire. Share your parts-swapping exploits with us.

Inspiration

Diodes can do nearly anything.  Their forward voltage varies with temperature, making them excellent thermometers. Even the humble LED can both glow and tell you how hot it is. And don’t get us started on the photo-diode. They are not just photocells, but radiation detectors.

Here’s a trick to double the current that a 555 timer can sink. We’d love to see other cases of 555 abuse, of course, but any other IC is fair game.

Resistors get hot. Thermochromic paint changes color with temperature. Every five years or so, we see an awesome new design. This ancient clock of [Sprite_tm]’s lays the foundation, [Daniel Valuch] takes it into the matrix, and [anneosaur] uses the effect to brighten our days.

Of course, thin traces can also be resistors, and resistors can get really hot. Check out [Carl Bujega]’s self-soldering four-layer PCB. And while magnetism is nearly magic, a broken inductor can still be put to good use as a bike chain sensor.

Or maybe you have a new twist on the absolutely classic LEDs-as-light-sensors? Just because it’s been done since the early says of [Forrest Mims] doesn’t mean we don’t want to see your take.

Get out there and show us how you can do it wrong too.

This Rail Speeder Needs A Little Work

If you take the wheels off a FIAT Punto, you might just notice that those rims fit nicely on a rail. [AT Lab] did, and the resulting build makes for a very watchable video.

Some of us have been known to spend a little too much time chasing trains, and there’s little on rails that won’t catch a railfan’s eye. That goes for rail speeders too, home constructed railcarts for exploring abandoned lines, and there are some great builds out there. We like the one in the video below the break, but we can’t help noticing a flaw which might just curtail its career.

It’s a simple enough build, a wooden chassis, a single motor and chain drive to one axle. All the wheel fittings are 3D printed, which might be a case of using the one tool you have to do everything, but seems to work. It rides well on the test track which appears to be an abandoned industrial siding, but it’s in those wheels we can see the problem and we guess that perhaps the builder is not familiar with rails. The Punto wheels have an inner rim and an outer rim, while a true rail wheel only has an inner one. There’s a good reason for this; real railways have points and other trackwork, not to mention recessed rails at road crossings or the like. We love the cart, but we’d cut those inner rims off to avoid painful derailments.

If you’re up for the ultimate railway build, take care not to go near a live line, and make sure you follow this video series.

Continue reading “This Rail Speeder Needs A Little Work”

Street with polluted smoggy air

Serious Chemical Threat Sniffer On A Budget

Chemical warfare detection was never supposed to be a hobbyist project. Yet here we are: Air Quality Guardian by [debdoot], the self-proclaimed world’s first open source chemical threat detection system, claims to pack lab-grade sensing into an ESP32-based build for less than $100. Compare that with $10,000+ black-box hardware and you see why this is worth trying at home, even if this project might not have the nut cracked just yet.

Unlike your air monitor from IKEA, the device aims to analyze raw gas sensor resistance – ohm-level data most devices throw away – combined with temporal spikes, humidity correlations, and a database of 35+ signatures. Of course, there is a lot of work to be done here on the calibration side, and we don’t have any chemical warfare agents on hand to test against, so we have no idea how well it works, and we’d expect false positives. Still, the idea of taking a more granular look at the data coming off the sensor may bear some fruit.

(Editor’s note: edited with a hefty dash of skeptical salt.)

Featured Image by Arjun Lama on Unsplash

Jointly Is A Typeface Designed For CNC Joinery

If you have a CNC router, you know you can engrave just about any text with the right tool, but Jointly is a typeface that isn’t meant to be engraved. That would be too easy for [CobyUnger]. His typeface “Jointly” is the first we’ve seen that’s meant to be used as joinery.

The idea is simple: carve mortises that take the shape of letters in one piece, and carve matching letter-tenons into the end of another. Push them together, and voila: a joint! To get this concept to work reliably, the font did have to be specially designed — both the inner and outer contours need to be accessible to a rotary cutting tool. Cutting tools get harder to use the smaller they go (or more fragile, at any rate) so with Jointly, the design spec was that any letters over 3/4″ (19.05 mm) tall needed to be handled with a 1/8″ (3.175 mm) rotary cutter.

This gives the font a friendly curved appearance we find quite fetching. Of course if you’re going to be cutting tenons into the end of a board, you’re going to need either some serious z-depth or an interesting jig to get the end of the board under the cutting head. It looks like [CobyUnger] has both, but he mentions the possibility of using a handheld CNC router as the cheaper option.

Speaking of routing out type, do you know the story of Gorton? You can’t make joinery with that typeface, but you’ve almost certainly seen it.