Whither The Chip Shortage?

Do you remember the global chip shortage? Somehow it seems so long ago, but it’s not even really been three years yet. Somehow, I had entirely forgotten about it, until two random mentions about it popped up in short succession, and brought it all flooding back like a repressed bad dream.

Playing the role of the ghost-of-chip-shortage-past was a module for a pair of FPV goggles. There are three versions of the firmware available for download at the manufacturer’s website, and I had to figure out which I needed. I knew it wasn’t V1, because that was the buggy receiver PCB that I had just ordered the replacement for. So it was V2 or V3, but which?

Digging into it, V2 was the version that fixed the bug, and V3 was the redesign around a different microcontroller chip, because they couldn’t get the V2 one during the chip shortage.

I saw visions of desperate hackers learning new toolchains, searching for alternative parts, finding that they could get that one chip, but that there were only 20 of them left and they were selling for $30 instead of $1.30. I know a lot of you out there were designing through these tough couple years, and you’ve all probably got war stories.

And yet here we are, definitively post-chip-shortage. How can you be sure? A $30 vape pen includes a processor that we would have killed for just three years ago. The vape includes a touchscreen, just because. And it even has a Bluetooth LE chip that it’s not even using. My guess is that the hardware designers just put it in there hoping that the firmware team would get around to using it for something.

This vape has 16 MB of external SPI Flash! During the chip shortage, we couldn’t even get 4 MB SPI flash.

It’s nice to be on the other side of the chip shortage. Just order whatever parts you want and you get them, but don’t take for granted how luxurious that feels. Breathe easy, and design confidently. You can finally use that last genuine STM32F103 blue pill board without fear of it being the last one on earth.

(Featured image is not an actual photo of the author, although he does sometimes have that energy.)

Bringing Bluetooth To The Zune

The Zune might have joined the portable media player game too late to ever really be competition for the iPod, but that doesn’t mean it didn’t pick up some devoted fans along the way. Some of them are still breathing new life into the device, such as [The Director of Legal Evil Emeritus] at the Louisville Hackerspace, with this project that gives it Bluetooth capability.

As far as media players go, there’s still some solid reasons to rock a Zune. Compared to other devices of the era, it offers a better DAC, an FM tuner, and no iTunes reliance. The goal of this project was to bring a bit of modern functionality without having to do any modification of the Zune itself. As the player supported docks with IR remotes, this build involves using an ESP32 to listen to the Bluetooth signal coming from the speakers, interpret any button presses, and forward them along to the Zune’s dock.

There is a dedicated scene for these old music players, but this build is unique for not needing to crack open the case and splice in a Bluetooth module. Even then, those typically don’t have the ability to interact with things like this speaker with its integrated control buttons.

We don’t often seen Zune hacks come our way — the last time Microsoft’s player graced these pages was in 2010, when the Open Zune Development Kit was released.

Thanks to [JAC_101] for the tip!

An LED Sphere For Your Desk

The Las Vegas Sphere is great and all, but few of us can afford the expense to travel to out there to see it on the regular. If you’re looking for similar vibes you can access at home, you might enjoy the desk toy that [AGBarber] has designed.

The scale is small — the sphere measures just 98 mm (3.6 inches) in diameter — but that just means it’s accessible enough to be fun. The build is based around various sizes of WS2812B addressable LED rings, and contains 120 individual RGB LEDs in total. They’re wrapped up in a 3D printed housing which does a great job of diffusing the light. Transparent filament was used to print parts that light up with a richly-saturated glow with few visible hotspots. Commanding the LEDs is an ESP8266 microcontroller in the form of a Wemos D1 Mini, which provides plenty of grunt to run animations as well as great wireless connectivity options. [AGBarber] relied on their own Pixel Spork library to handle all the cool lighting effects. Files are on GitHub for the curious.

Maybe you don’t like spheres, and icosahedrons are more your speed. Well, we’ve featured those too—with 2,400 LEDs, no less.

Continue reading “An LED Sphere For Your Desk”

UNIX For A Legacy TI

Although now mostly known as a company who cornered the market on graphing calculators while only updating them once a decade or so, there was a time when Texas Instruments was a major force in the computing world. In the late 70s and early 80s they released a line of computers called the TI-99 to compete (unsuccessfully) with various offerings from Commodore, and these machines were fairly robust for the time. They did have limited memory but offered a 16-bit CPU and plenty of peripherals, and now there’s even a UNIX-like OS that they can run.

This version of UNIX is called UNIX99 and is the brainchild of AtariAge forum member [mrvan] who originally wasn’t looking to develop a full operating system for this computer but rather a set of standard C libraries to help with other projects. Apparently the step from that to a UNIX-flavored OS wasn’t too big so this project was born. While the operating system doesn’t have a UNIX certification, it has most of the tools any of us would recognize on similar machines. The OS has support for most of the TI-99 hardware, file management, a basic user account system, and a command shell through which scripts can be written and executed.

That being said, the limitations of the hardware do come through in the operating system. There’s no multitasking, for example, and the small amount of memory is a major hurdle as well. But that’s what makes this project all the more impressive, and [mrvan] isn’t stopping here. He’s working on a few other improvements to this platform, and we look forward to seeing future releases. UNIX itself is extremely influential in the computing world, and has been used a the model for other homebrew UNIX-like operating systems on similar platforms of this era such as the Z80.

Thanks to [Stephen] for the tip!

Photo courtesy of Rama & Musée Bolo via Wikimedia Commons

The 19th Century Quantum Mechanics

While William Rowan Hamilton isn’t a household name like, say, Einstein or Hawking, he might have been. It turns out the Irish mathematician almost stumbled on quantum theory in the or around 1827. [Robyn Arianrhod] has the story in a post on The Conversation.

Famously, Newton worked out the rules for the motion of ordinary objects back in 1687. People like Euler and Lagrange kept improving on the ideas of what we call Newtonian physics. Hamilton produced an especially useful improvement by treating light rays and moving particles the same.

Continue reading “The 19th Century Quantum Mechanics”

Active Probe Reaches 3 GHz

When you think of a scope probe, you usually think of what is basically a wire with a spring hook and an attenuator. Those are passive probes. [Kerry Wong] shows off a pre-release active probe that sidesteps some problems with those ordinary passive probes.

The trick is that passive probes have input capacitance that interferes with very high-frequency signals. They also tend to have less noise. Although the probe isn’t on the market yet, it is set to debut at a price lower than competitive probes. Still, be warned. The reason you don’t see them more often is that $1,000 is relatively inexpensive for an active probe.

Continue reading “Active Probe Reaches 3 GHz”

Detecting Surveillance Cameras With The ESP32

These days, surveillance cameras are all around us, and they’re smarter than ever. In particular, many of them are running advanced algorithms to recognize faces and scan license plates, compiling ever-greater databases on the movements and lives of individuals. Flock You is a project that aims to, at the very least, catalogue this part of the surveillance state, by detecting these cameras out in the wild.

The system is most specifically set up to detect surveillance cameras from Flock Safety, though it’s worth noting a wide range of companies produce plate-reading cameras and associated surveillance systems these days. The device uses an ESP32 microcontroller to detect these devices, relying on the in-built wireless hardware to do the job. The project can be built on a Oui-Spy device from Colonel Panic, or just by using a standard Xiao ESP32 S3 if so desired. By looking at Wi-Fi probe requests and beacon frames, as well as Bluetooth advertisements, it’s possible for the device to pick up telltale transmissions from a range of these cameras, with various pattern-matching techniques and MAC addresses used to filter results in this regard. When the device finds a camera, it sounds a buzzer notifying the user of this fact.

Meanwhile, if you’re interested in just how prevalent plate-reading cameras really are, you might also find deflock.me interesting. It’s a map of ALPR camera locations all over the world,  and you can submit your own findings if so desired. The techniques used by in the Flock You project are based on learnings from the DeFlock project. Meanwhile, if you want to join the surveillance state on your own terms, you can always build your own license plate reader instead!

[Thanks to Eric for the tip!]