Modeling The Classic 555 Timer On A Breadboard

Over the years, readers have often commented that microcontrollers (or more specifically, the Arduino) are overkill for many of the projects they get used in. The admonition that the creator “Should have used a 555” has become something of a rallying cry for those who think modern electronic hobbyists are taking the easy way out.

But what if you think even the lowly 555 timer is overkill? In that case, perhaps you’ll be interested in a recent blog post by [TheMagicSmoke], where the reader is walked through the process of creating an analog of the classic integrated circuit on a somewhat larger scale. Finally, we can replace that cheap and handy IC with a mass of wires and components.

Alright, so you’ve probably guessed that there’s no practical reason to do this. Outside of some theoretical MacGyver situation in which you needed to create a square wave using parts salvaged from devices laying around, anyway. Rather, the project is presented as a good way to become more confident with the low-level operation of electronic circuits, which is something we think everyone can agree is a good thing.

The components used include a 74S00 quad NAND gate, a LM358 dual operational amplifier, a 2N2222A transistor, and a handful of passive components. [TheMagicSmoke] not only explains how the circuit is constructed, but shows the math behind how it all works. Finally, an oscilloscope is used to verify it’s operating as expected.

We respect a hacker on a mission, just last month [TheMagicSmoke] put together a similar “back to basics” post on how to interface with an I2C EEPROM.

DIY Raspberry Pi Multi FX Stomp Box

From building your own analog effects pedal to processing audio through micro controllers, a lot of musicians love building their own boxes of sound modification. In his entry for the 2019 Hackaday Prize, [Craig Hissett] has a project to build an all-in-one multi-effects stomp box.

At the center of the box is a Raspberry Pi with an AudioInjector stereo sound card.  The card takes care of stereo in and out, and passing the signal to the Pi. The software is Modep, an open source audio processor that allows the setup of a chain of digital effects plugins to be run on the Pi. After finding some foot switches, [Craig] connected them to an Arduino Pro Micro which he set up as a MIDI device that sends MIDI messages to the Modep software running on the Pi.

There are still a few steps to go, but [Craig] has the basic layout covered. Next up is wiring it up and building a proper case for it, as well as working on latency. A few years ago, another multi-effects stomp box was featured in the Hackaday Prize, and last year, this multi-effects controller was featured.

 

You Wouldn’t Download A Nuclear Reactor, But Could You?

By pretty much any metric you care to use, the last couple of decades has been very good for the open source movement. There was plenty of pushback in the early days, back when the only people passionate about the idea were the Graybeards in the IT department. But as time went on, more and more developers and eventually companies saw the benefit of sharing what they were working on. Today, open source is effectively the law of the land in many fields, and you don’t have to look far to find the community openly denouncing groups who are keeping their source under lock and key.

The open source submarine that won 2017 Hackaday Prize.

In the last few years, we’ve even seen the idea gain traction in the hardware field. While it’s not nearly as prevalent as opening up the software side of things, today it’s not uncommon to see hardware schematics and PCB design files included in project documentation. So not only can you download an open source operating system, web browser, and office suite, but you can also pull down all the information you need to build everything from a handheld game system to an autonomous submarine.

With so many projects pulling back the curtain, it’s not unreasonable to wonder where the limits are. There’s understandably some concerns about the emerging field of biohacking, and anyone with a decent 3D printer can download the files necessary to produce a rudimentary firearm. Now that the open source genie is out of the bottle, it seems there’s precious little that you can’t download from your favorite repository.

Scratching an exceptionally surprising entry off that list is Transatomic, who late last year uploaded the design for their TAP-520 nuclear reactor to GitHub. That’s right, now anyone with git, some uranium, and a few billion dollars of seed money can have their very own Molten Salt Reactor (MSR). Well, that was the idea at least.

So six months after Transatomic dumped a little under 100 MB worth of reactor documentation on GitHub, is the world any closer to forkable nuclear power? Let’s find out.

Continue reading “You Wouldn’t Download A Nuclear Reactor, But Could You?”

EasyEDA Hack Chat With Dillon He

Join us Wednesday at 5:00 PM Pacific time for the Easy EDA Hack Chat with Dillon He!

Note the different time than our usual Hack Chat slot! Dillon will be joining us from China.

Since the birth of electronic design automation in the 1980s, the universe of products to choose from has grown tremendously. Features from schematic editing to circuit simulation to PCB design and autorouting can be found in every permutation imaginable, and you’re sure to find something that fits your needs, suits your budget, and works on your platform.

Dillon He started EasyEDA back in 2010 with Eric Cui, and since then the cloud-based EDA tool has become a popular choice. From working across teams to its “run anywhere” capabilities, EasyEDA has become the go-to tool for hundred of thousands of designers. Dillon will drop by the Hack Chat to answer all your questions about EasyEDA — how it started, where it is now, and what we can expect in the future.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, June 19 at 5:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

 

A Faithful Replica Of An Early Computer Trainer

Turn the clock back six decades or so and imagine you’re in the nascent computer business. You know your product has immense value, but only to a limited customer base with the means to afford such devices and the ability to understand them and put them to use. You know that the market will eventually saturate unless you can create a self-sustaining computer culture. But how does one accomplish such a thing in 1961?

Enter the Minivac 601. The brainchild of no less a computer luminary than Claude Shannon, the father of information theory, the Minivac 601 was ostensibly a toy in the vein of the “100-in-1” electronics kits that would appear later. It used electromechanical circuits to teach basic logic, and now [Mike Gardi] has created a replica of the original Minivac 601.

Both the original and the replica use relays as logic switches, which can be wired in various configurations through jumpers. [Mike]’s version is as faithful to the original as possible with modern parts, and gets an extra authenticity boost through the use of 3D-printed panels and a laser-cut wood frame to recreate the look of the original. Sadly, the unique motorized rotary switch, used for both input and output on the original, has yet to be fully implemented on the replica. But everything else is spot on, and the vintage look is great. Extra points to [Mike] for laboriously recreating the original programming terminals with solder lugs and brass eyelets.

We love seeing this retro replica, and appreciate the chance to reflect on the genius of its inventor. Our profile of Claude Shannon is a great place to start learning about his other contributions to computer science. We’ve also got a deeper dive into information theory for the curious.

Thanks to [Granz] for the tip.

Automate The Freight: Autonomous Delivery Hits The Mainstream

It should come as no surprise that we here at Hackaday are big boosters of autonomous systems like self-driving vehicles. That’s not to say we’re without a healthy degree of skepticism, and indeed, the whole point of the “Automate the Freight” series is that economic forces will create powerful incentives for companies to build out automated delivery systems before they can afford to capitalize on demand for self-driving passenger vehicles. There’s a path to the glorious day when you can (safely) nap on the way to work, but that path will be paved by shipping and logistics companies with far deeper pockets than the average commuter.

So it was with some interest that we saw a flurry of announcements in the popular press recently regarding automated deliveries. Each by itself wouldn’t be worthy of much attention; companies are always maneuvering to be seen as ahead of the curve on coming trends, and often show off glitzy, over-produced videos and well-crafted press releases as a low-effort way to position themselves as well as to test markets. But seeing three announcements at one time was unusual, and may point to a general feeling by manufacturers that automated deliveries are just around the corner. Plus, each story highlighted advancements in areas specifically covered by “Automate the Freight” articles, so it seemed like a perfect time to review them and perhaps toot our own horn a bit.

Continue reading “Automate The Freight: Autonomous Delivery Hits The Mainstream”

Wireless Mouse Power-Up: Logitech MX Master Gets USB-C And Big Battery

When the internal rechargeable battery in his wireless mouse died, [cmot17] decided it was the perfect excuse for making a couple of modifications. The Logitech MX Master isn’t exactly a budget mouse to begin with, but that doesn’t mean there’s no room for improvement. With the addition of a larger battery and USB-C charging port, a very nice mouse just got even better.

As it turns out, there’s plenty of empty space inside the Logitech MX Master, which made it easy to add a larger battery. The original 500 mAh pack was replaced with a new 950 mAh one, which is often sold under the model number 603443. Realistically, if you wanted to go even bigger it looks like any three wire 3.7 V Li-Po pack would probably work in this application, but nearly doubling the capacity is already a pretty serious bump.

Adding the USB-C connector ended up being quite a bit trickier. [cmot17] ordered a breakout board from Adafruit that was just a little too large to fit inside the mouse. In the end, not only did some of the case need to get cut away internally, but the breakout PCB itself got a considerable trimming. Once it was shoehorned in there, a healthy dose of hot glue was used to make sure nothing shifts around.

Since [cmot17] didn’t change the mouse’s original electronics, the newly upgraded Logitech MX Master won’t actually benefit from the faster charging offered by USB-C. If anything, it’s actually going to charge slower thanks to the beefier battery. But considering how infrequently it will need to be charged with the upgraded capacity (Logitech advertised 40 days with the original 500 mAh battery), we don’t think it will be a problem.

Over the years, we’ve seen plenty of stuff crammed into the lowly mouse. Everything from a full computer, to malicious firmware code has been grafted onto that most ubiquitous of computer peripherals. So in the grand scheme of things, this is perhaps one of the most practical mouse modifications to ever grace these pages.