Detect Elevated Carbon Monoxide (Levels)

The molar mass of carbon monoxide (CO) is 28.0, and the molar mass of air is 28.8, so CO will rise in an ambient atmosphere. It makes sense to detect it farther from the ground, but getting a tall ladder is not convenient and certainly doesn’t make for fast deployment. What do you do if you don’t care for heights and want to know the CO levels in a gymnasium or a tall foyer? Here to save the day, is the Red Balloon Carbon Monoxide Detector.

Circuit.io generates the diagram and code to operate the CO sensor and turn a healthy green light to a warning red if unsafe levels are detected. The user holds the batteries, Arduino, and light while a red balloon lifts the sensor up to fifteen feet, or approximately five three meters. It is an analog sensor which needs some time to warm up so it pays to be warned about that wire length and startup.

Having a CO sentinel is a wise choice for this odorless gas.

Continue reading “Detect Elevated Carbon Monoxide (Levels)”

R3-14, The Personal Assistant Two Years In The Making

One of the great things about hacking together projects these days is how many powerful subsystems are readily available to reuse. [Sanjeet] took full advantage of a whole slate of reusable pieces when he built R3-14 — a personal assistant robot that you can see in action in the video below.

Many people started out in electronics building something simple like a crystal radio or an LED cube. But how far could you get if your projects had to begin at the most basic level, by drawing out copper wire, fabricating coils, capacitors, semiconductor devices, and batteries? Even if you know how to do all those things, it would take a lot of time, so there is no shame in using off-the-shelf components. By the same token, [Sanjeet] uses Google Assistant, 433 MHz RF transmitters, and a Raspberry Pi as components in this build. Along the way, he also contributed some reusable pieces himself, including an LED library for the PI and a library to allow Siri to control a Raspberry Pi.

Continue reading “R3-14, The Personal Assistant Two Years In The Making”

Arcade Asteroids, Now In Colour

Asteroids is one of the classic games of the early arcade era. Launched in 1979 by Atari, it relied upon using an XY vector monitor to deliver crisp graphics for its space-based gameplay. One of the limitations of the original arcade games was that the game was only rendered in a single colour, white. Over 30 years later, [Arcade Jason] decided to see what it would take to build a color Asteroids machine.

The ROM hack also modified the shapes of several in-game objects.

The hack relies on the fact that the original game used a four-bit resistor ladder DAC to draw vectors in different intensity levels. Through some ingeniously simple hardware, this DAC is repurposed to denote different colours instead. It’s laced together with a 74LS08 AND gate chip, along with a handful of resistors and diodes. Three bits are used for red, green, and blue, respectively, with the fourth used as a “white boost” signal to allow the differentiation of colours like red and pink, or dark and light blue. It’s then all wired into an RGB vector monitor for final display. After that, it’s just a matter of a simple ROM hack to set the colors of various on screen objects.

Vector monitors are notoriously hard to film well, but it’s clear that in person the output is rather impressive. Making color versions of old retro games is actually a hobby of [Arcade Jason]’s – we’ve featured his color Vectrex before. Video after the break.

Continue reading “Arcade Asteroids, Now In Colour”

Mergers And Acquisitions: Apple Buys Most Of Dialog

Apple is buying a $600 million stake in Dialog Semiconductor in a deal Dialog is describing as an asset transfer and licensing deal.

Dialog’s current portfolio is focused mainly on mobile devices, with Bluetooth wearables-on-a-chipCODEC chips for smartphones, and power management ICs for every type of portable electronics. Power managment ICs are by far the most visible component, although they do have the very interesting GreenPAK, a sort of mixed-signal FPGA-ish thing that is one of the more interesting chips to be come online in the last few years. Apple of course are a trillion dollar company that once made computers, but now receives most of its revenue through phone dongles and lightning connector converters. It is not clear at the time of this writing whether a Dialog engineer with experience in heat management will be joining Apple.

In the last week, Apple have taken some bad press about the state of their supply chain. Bloomberg reported Apple found hidden chips in Supermicro motherboards. ostensibly implanted by Chinese intelligence agencies. This story is reportedly multiply sourced, but there’s no evidence or explanation of how this supply chain hack was done. In short, infiltration of a supply chain by foreign agents could happen (and I suspect Bloomberg engineers found something in some of their hardware), but the Bloomberg piece is merely just a wake-up call telling us yes, you are vulnerable to a hardware attack.

This is further evidence of Apple’s commitment to vertical integration. Apple are making their own chips, and the A12 Bionic in the new iPhone X is an Apple-designed CPU, GPU, and ‘neural engine’ that turns your Facetime sessions into animated emojis. This chip is merely the latest in a series of SoCs developed by Apple, and adds to Apple’s portfolio of chips designed to run the Apple Watch, Apple AirPods, and system management controllers in Apple products. There’s no other electronics manufacturer that is as dedicated to vertical integration as Apple (although we’re pouring one out for Commodore), and the acquisition of Dialog will surely add to Apple’s capabilities.

Dymo Rides Again With This Dot-Matrix Label Embosser

For a five-year-old future Hackaday scribe, there could be no greater day than that on which a Dymo label maker appeared in the house. With its spinny daisy-wheel to choose a character and its squeezy handle to emboss the letter into the plastic tape, there would follow a period of going nuts kerchunking out misspelled labels and slapping them on everything. Plus the things look like space guns, so there would have been a lot of pew-pewing too.

This Dymo dot-matrix label maker bears no resemblance to our long-lost label blaster, but it’s pretty cool in its own right. The product of collaborators [Felix Fisgus] and [Timo Johannes] and undertaken as a project for their digital media program, the only thing the labeler has in common with the Dymos of old is the tape. Where the manual labelers press the characters into the tape with a punch and die, their project uses a dot-matrix approach. Messages are composed on an old PS/2 keyboard through an Arduino and a 16×2 LCD display, and punched onto the tape a dot at a time. The punch is a large darning needle riding on the remains of an old CD drive and driven by a solenoid. When it comes time to cut the label, servo driven scissors do the job. It’s a noisy, crazy, Rube Goldberg affair, and we love it. Check it out in action in the video below.

We applaud [Felix] and [Timo] for carrying the torch of embossed label making. It’s a shame that we’ve turned to soulless thermal printers to handle most of our labeling needs; then again, we’ve seen some pretty neat hacks for those too.

Continue reading “Dymo Rides Again With This Dot-Matrix Label Embosser”

The Solution To DJs Playing Their MacBooks

The greatest invention relating to music in the 20th century was multi-track recording, for which we have Les Paul to thank. The second greatest? Non-linear editing and Pro Tools. For some bizarre reason, we have Ricky Martin to thank for that because Livin’ La Vida Loca was the first #1 single to be recorded and mixed entirely in Pro Tools.

The third greatest invention in recording since Edison is the plugin. If you’ve already got a computer sitting in front of you, you’ve got every instrument ever made. All you need is a plugin. [Jan] was working on his live setup recently, and didn’t want to look like a DJ playing the MacBook. Instead, he built a box that combines those powerful plugins into a single, easy to use box that sits right on top of his keyboard.

Inside this box is a modern Windows machine with a PCI Express audio interface. The display is not a touchscreen, because [Jan] originally thought a touchscreen wouldn’t be good for a live performance. He’s reconsidering that now. Other than that, you’re looking in effect at a microATX motherboard and a 10″ LCD in a box, but that’s where this build gets interesting.

The mechanical design of this build is of paramount importance, so [Jan] is using two mod wheels on the side, a bunch of silicone buttons on the bottom, and a few rotary encoders. These are MIDI controls, able to change whatever variables are available in the custom VSTs. That in itself is a pretty interesting build, with circuit bent MIDI controllers and off-the-shelf buttons.

The completed build attaches right to the Nord Stage master keyboard, and eight VST instrument channels are right at [Jan]’s fingertips. You can check out a video of this build in action below.

Continue reading “The Solution To DJs Playing Their MacBooks”

Tiny Telescope For Simple Radio Astronomy

We are used to imagining radio telescopes as immense pieces of scientific apparatus, such as the Arecibo Observatory in Puerto Rico, or the Lovell telescope in the UK. It’s a surprise then that they can be constructed on a far more modest sale using off-the-shelf components, and it’s a path that [Gonçalo Nespral] has taken with his tiny radio telescope using a satellite dish. It’s on an azimuth-elevation mount using an Ikea lazy susan and a lead screw, and it has a satellite TV LNB at the hot end with a satellite finder as its detector.

So far he’s managed only to image the wall of his apartment, but that clearly shows the presence of the metal supporting structure within it. Taking it outdoors has however not been such a success. If we wanted to hazard a guess as to why this is the case, we’d wish to look at the bandwidth of that satellite finder. It’s designed to spot a signal from a TV broadcast bird over the whole band, and thus will have a bandwidth in the hundreds of MHz and a sensitivity that could at best be described as a bit deaf. We hope he’ll try a different path such as an RTL-SDR in the future, and we look forward to his results.

This isn’t the first simple radio telescope we’ve seen here, aside from at least one other LNB-based one we’ve also shown you a WiFi device.