Modern PC Crammed Into An Original Xbox

When the original Microsoft Xbox was released in 2001, one of the most notable features of its design was that it used a number of off-the-shelf computer components. Inside contemporary offerings from Nintendo and Sony you’ll see almost nothing but proprietary components, whereas cracking open the Xbox reveals an IDE hard drive, a customized PC DVD-ROM drive, and an Intel Pentium III CPU. Depending on which team you were on, the Xbox’s close relation to PC hardware of the day was either a point of honor or ridicule in the early 2000’s console wars; but regardless of politics, it ended up being instrumental in all of the hacks and mods the console got over its lifetime.

In that light, [P8ntBal1551] managing to jam a modern computer into the shell of an Xbox is like having the last laugh in this nearly two-decade-old debate. Wanting to build an HTPC that wouldn’t look out of place in his entertainment center, he figured the Xbox would make a suitable home for his Intel 4460 powered build. Not to say it was easy: getting all of the hardware and associated wiring inside the case took a bit of cheating, but the end result looks good enough that we’ll give him a pass.

The key to this project is the 3D printed structure inside the Xbox’s case that holds everything together. Painstakingly designed to align all of his components and cooling fans, it took over 58 hours to print just the base plate alone on his CR-10.

Even with all of his primary components installed, [P8ntBal1551] still had to wrestle with an absolute rat’s nest of wiring. He couldn’t find smaller versions of a number of the cables he needed, so he had to resort to some creative wire management to get everything packed in there. In the end, there was simply too much gear for the Xbox’s case to legitimately fit, so he ended up printing a spacer to fit between the bottom and top halves. Though in the end even this worked out in his favor, as it gave him a place to mount the integrated FLIRC IR receiver without having to cut a hole in the original front panel. The end product looks close enough to stock to be almost unnoticeable to the casual observer.

Its been a while since we’ve seen a hack for Microsoft’s original black and green monster, most of the Xbox projects we see are in relation to its significantly more popular successor. It’s always nice to see people keeping the classics alive in their own way.

[via /r/pcmasterrace]

Gamers Rejoice: Here’s A Fix For ASUS Strix Vega 64 Thermal Issues

Every year, we demand our computers to be ever faster, capable of delivering progressively more eye-watering graphics and doing it all as reliably as ever. Unfortunately, sometimes, new designs miss the mark. [Cloakedbug] was having issues with voltage regulator temperatures on an ASUS Strix VEGA 64 — one of the latest RADEON graphics cards on the market — and decided to investigate.

Right away, issues were apparent; one of the main thermal pads was making poor contact with the FETs it was intended to carry heat for, and was poorly sized to boot. In a show of poor quality, the pad wasn’t nicely sized for the aluminium plate it was attached to, and was applied in a rather haphazard manner. Suspecting this was perhaps one of the root causes of the card running hot, the decision was made to replace the pad with something more suitable.

Specifying a thicker pad that was properly sized to the heatsink plate was the order of the day, and a couple of other smaller heatsink pads were also replaced, all with Thermal Grizzly Minus Pad 8. [Cloakedbug] reports a temperature drop of over 30 degrees C under load on the VR SOC bank, down from 115 C initially. It sounds like this will go a long way to keeping the card happy and healthy over time. Looking around the web, there’s definitely a few reports of thermal issues out there, so this could be a useful fix if you’re having trouble with the same card at home.

In the end, it’s a simple, tidy fix to an expensive piece of hardware that really should have shipped with this sorted from the factory. We’ve seen a fair few thermal fixes over the years here, like this one involving a thermal camera as a diagnosis tool.

[Thanks to Keith O for the tip!]

Build Your Own Linux Single Board Computer

We are fortunate enough to have a huge choice of single-board computers before us, not just those with a bare-metal microcontroller, but also those capable of running fully-fledged general purpose operating systems such as GNU/Linux. The Raspberry Pi is probably the best known of this latter crop of boards, and it has spawned a host of competitors with similarly fruity names. With an entire cornucopia to choose from, it takes a bit more than evoking a berry to catch our attention. The form factors are becoming established and the usual SoCs are pretty well covered already, show us something we haven’t seen before!

[Marcel Thürmer] may have managed that feat, with his Blueberry Pi. On the face of it this is just Yet Another SBC With A Fruity Pi Name, but what caught our attention is that unlike all the others, this is one you can build yourself if you want. It’s entirely open-source, but it differs from other boards that release their files to the world in that it manages to keep construction within the realm of what is possible on the bench rather than the pick-and-place. He’s done this by choosing an Alwinner V3, an SoC originally produced for the action camera market that is available in a readily-solderable TQFP package. It’s a choice that has allowed him to pull off another constructor-friendly feat: the board is only two layers, so it won’t break the bank to have it made.

It’s fair to say that the Allwinner V3 (PDF) isn’t the most powerful of Linux-capable SoCs, but it has the advantage of built-in RAM to avoid more tricky soldering. With only 64Mb of memory, it’s never going to be a powerhouse, but it does pack onboard Ethernet, serial and parallel camera interfaces, and audio as well as the usual interfaces you’d expect. There is no video support on the Blueberry Pi, but the chip has LVDS for an LCD panel, so it’s not impossible to imagine something could be put together. Meanwhile, all you need to know about the board can be found on its GitHub repository. There is no handy OS image to download, u-boot instructions are provided to build your own. We suspect if you’re the kind of person who is building a Blueberry Pi though this may not present a problem to you.

We hope the Blueberry Pi receives more interest, develops a wider community, and becomes a board with a solid footing. We like its achievement of being both a powerful platform and one that is within reach of the home constructor, and we look forward to it being the subject of more attention.

The Ins And Outs Of Geiger Counters, For Personal Reasons

There are times in one’s life when circumstances drive an intense interest in one specific topic, and we put our energy into devouring all the information we can on the subject. [The Current Source], aka [Derek], seems to be in such a situation these days, and his area of interest is radioactivity and its measurement. So with time to spare on his hands, he has worked up this video review of radioactivity and how Geiger counters work.

Why the interest in radioactivity? Bluntly put, because he is radioactive, at least for the next week. You see, [Derek] was recently diagnosed with thyroid cancer, and one of the post-thyroidectomy therapeutic options to scavenge up any stray thyroid cells is drinking a cocktail of iodine-131, a radioisotope that accumulates in thyroid cells and kills them. Trouble is, this leaves the patient dangerously radioactive, necessitating isolation for a week or more. To pass the time away from family and friends, [Derek] did a teardown on a commercial Geiger counter, the classic Ludlum Model 2 with a pancake probe. The internals of the meter are surprisingly simple, and each stage of the circuit is easily identified. He follows that up with a DIY Geiger counter kit build, which is also very simple — just a high-voltage section made from a 555 timer along with a microcontroller. He tests both instruments using himself as a source; we have to say it’s pretty alarming to hear how hot he still is. Check it out in the video below.

Given the circumstances, we’re amazed that [Derek] is not only keeping his cool but exhibiting a good sense of humor. We wish him well in his recovery, and if doing teardowns like this or projects like this freezer alarm or a no-IC bipolar power supply helps him cope, then we all win.

Continue reading “The Ins And Outs Of Geiger Counters, For Personal Reasons”

Hackaday Links Column Banner

Hackaday Links: August 12, 2018

Falling into the marvelous space between, ‘I really want to do that’ and ‘but that’s a lot of work and I’m lazy’ comes this reproduction of the motherboard from the original IBM 5150. This is a complete reproduction of the first PC, being sold as a kit. Yes, chips are included, although I highly doubt they’ve gone through the trouble of finding chips with contemporaneous date codes. We’re dying for a writeup on this one.

Someone has found the source code for the first Furby. [Mark Boldyrev] was talking with a few fellows on the MAME forum to see if anyone had the source for the Furby. He was looking into contacting the USPTO for the original source but the red tape involed was a bit too intense. Luckily, that research turned up some info from [Sean Riddle] who somehow already found the original source listing. After [Mark] got in contact, [Sean] posted it as a PDF. Yes, it’s 6502 source, although the microcontroller is technically a SPC81A, with the rest of the hardware consisting of TI50C04 speech chip. (you would not believe how many toys are still shipping with a 6502-ish core somewhere inside). The files are up in the archive, and we’re probably going to have a Furby MAME sometime soon.

The Bitfi hardware wallet is a cryptocurrency storage device being bandied about by [John McAffee], and there’s a quarter million dollar bug bounty on it. It’s ‘unhackable’, and ‘it has no memory’. I’m serious, those are direct quotes from [McAffee]. Both of those claims are nonsense and now it can play Doom.

Oh noes, a new hardware backdoor in x86 CPUs! [xoreaxeaxeax] has published a demo that allows userland code to read and write kernel data (that’s very bad). The exploit comes in the form of the ‘rosenbridge backdoor’, a small embedded processor tightly coupled to the CPU that is similar to, but entirely different from, Intel’s ME. This processor has access to all the CPU’s memory, registers, and pipeline. The good news, and why this isn’t big news, is that this exploit only affects Via C3 CPUs. Yes, the other company besides Intel and AMD that makes x86 CPUs. These are commonly found in industrial equipment and ATMs.

Tiny Solar Energy Module (TSEM) Brings Big Performance

The Tiny Solar Energy Module (TSEM) by [Jasper Sikken] is not only physically tiny at one-inch square, but it is all about gathering tiny amounts of solar energy — amounts too small to be useful in a conventional sense — and getting meaningful work done, like charging a battery for later use. Elements that make this board easy to integrate into other projects include castellated vias, 1.8 V and 3.3 V regulated outputs that are active when the connected battery has a useful charge, and a low battery warning that informs the user of impending shutdown when the battery runs low. The two surface-mount solar cells included on the tiny board are capable of harvesting even indoor light, but the board also has connection points for using larger external solar cells if needed.

The board shows excellent workmanship and thoughtful features; it was one of the twenty Power Harvesting Challenge finalists chosen to head to the final round of The Hackaday Prize. The Hackaday Prize is still underway, with the Human-Computer Interface Challenge running until August 27th. That will be followed by the Musical Instrument Challenge before the finals spin up. If you haven’t started yet, there’s still time to make your mark. All you need is a documented idea, so start your entry today.

The Electric Vehicles Of Electromagnetic Field: The Dustbin 7

We’re producing an occasional series following some of the miniature electric vehicle builds currently underway at a feverish pace to be ready for the upcoming Electromagnetic Field hacker camp in the UK. Today we’re going down to Somerset, where [Rory] has produced a very serviceable machine he calls the Dustbin 7.

The Hacky Racers series stipulates a £500 budget along with a few rules covering vehicle safety and dimensions, so he had to pick his components carefully to allow enough cash for the pile of LiPo batteries he’d have to buy new in the absence of a convenient surplus source. The motor he picked was a 2kW brushless scooter motor, and that he mated to a 48V e-bike controller

Running gear came from a surplus school project race car but looks suspiciously similar to the wheels you’d see on a typical electric wheelchair. His chassis is welded box section steel, and the bodywork has a classic car feel to it as he comes from a family of Triumph owners. The name “Dustbin 7” comes from the affectionate nickname for the popular pre-war British Austin 7 people’s car.

In use, as you can see below it appears to have a fair turn of speed without displaying too alarming a handling characteristic. If this is the standard of vehicles in the competition then we can imagine that racing will be an exciting spectacle!

For more EMF electric vehicle tomfoolery, take a look at this modified Sinclair C5.

Continue reading “The Electric Vehicles Of Electromagnetic Field: The Dustbin 7”