A Space Walk Through ISS

The International Space Station (ISS) might not be breaking news, but this February, National Geographic released a documentary that dives into the station’s intricate engineering. It’s a solid reminder of what human ingenuity can achieve when you put a team of engineers, scientists, and astronauts together. While the ISS is no longer a new toy in space, for hackers and tinkerers, it’s still one of the coolest and most ambitious projects ever. And if you’re like us—always looking for fresh inspiration—you’ll want to check this one out.

The ISS is a masterpiece, built piece by piece in space, because why make things easy? With 16 pressurized modules, it’s got everything needed to keep humans alive and working in one of the harshest environments imaginable. Add in the $150 billion price tag (yes, billion), and it’s officially the most expensive thing humans have ever built. What makes it especially interesting to us hackers is its life support systems—recycling water, generating oxygen, and running on solar power. That’s the kind of closed-loop system we love to experiment with down here on Earth. Imagine the implications for long-term sustainability!

But it’s not just a survival bunker in space. It’s also a global science lab. The ISS gives researchers the chance to run experiments that could never happen under Earth’s gravity—everything from technology advancements to health experiments. Plus, it’s our testing ground for future missions to Mars. If you’re fascinated by the idea of hacking complex systems, or just appreciate a good build, the ISS is a dream project.

Catch the documentary and dive into the world of space-grade hacking. The ISS may be orbiting out of sight, but for those of us looking to push the boundaries of what’s possible, it’s still full of inspiration.

Continue reading “A Space Walk Through ISS”

A black and white line drawing of a vehicle interior showing the dashboard and. steering wheel. On the infotainment screen, the words "Selected Ad" are emblazoned in large letters.

Will You Need Ad Block For Your Car?

The modern web has become difficult to navigate without ad blocking software. Ford now has a patent application that would bring the ads we hate to your vehicle’s infotainment system. [via PCMag]

Ford has already replied to criticism with the usual corporate spiel of patents not necessarily being the direction the company will go with future products, but it’s hard to imagine that other automakers aren’t planning similar systems since they’re already charging extra for heated seats, EV range, and performance. Bringing ads to the captive audience of your personal vehicle and targeting them based on listening to the occupants’ conversations would be a new low. Maybe you’ll be able to pay an extra $100/month for the “ad-free experience.”

Instead of taking advantage of the EV transition to make better, simpler cars, automakers are using their highly-computerized nature to extract more from you and provide less when you drive off the lot. Enshittification has come for the automobile. Perhaps auto executives should read A Few Reasonable Rules for the Responsible Use of New Technology?

The first step of blocking these ads will likely be jailbraking the infotainment system. If that wasn’t enough, locking features behind a paywall has come for wheelchairs too.

MicroLab reactor setup

Little Pharma On The Prairie

Let’s get the obvious out of the way first — in his DEFCON 32 presentation, [Dr. Mixæl Laufer] shared quite a bit of information on how individuals can make and distribute various controlled substances. This cuts out pharmaceutical makers, who have a history of price-gouging and discontinuing recipes that hurt their bottom line. We predict that the comment section will be incendiary, so if your best argument is, “People are going to make bad drugs, so no one should get to have this,” please disconnect your keyboard now. You would not like the responses anyway.

Let’s talk about the device instead of policy because this is an article about an incredible machine that a team of hackers made on their own time and dime. The reactor is a motorized mixing vessel made from a couple of nested Mason jars, surrounded by a water layer fed by hot and cold reservoirs and cycled with water pumps. Your ingredients come from three syringes and three stepper-motor pumps for accurate control. The brains reside inside a printable case with a touchscreen for programming, interaction, and alerts.

It costs around $300 USD to build a MicroLab, and to keep it as accessible as possible, it can be assembled without soldering. Most of the cost goes to a Raspberry Pi and three peristaltic pumps, but if you shop around for the rest of the parts, you can deflate that price tag significantly. The steps are logical, broken up like book chapters, and have many clear pictures and diagrams. If you want to get fancy, there is room to improvise and personalize. We saw many opportunities where someone could swap out components, like power supplies, for something they had lying in a bin or forego the 3D printing for laser-cut boards. The printed pump holders spell “HACK” when you disassemble them, but we would have gone with extruded aluminum to save on filament.

Several times [⁨Mixæl] brings up the point that you do not have to be a chemist to operate this any more than you have to be a mechanic to drive a car. Some of us learned about SMILES (Simplified Molecular Input Line Entry System) from this video, and with that elementary level of chemistry, we feel confident that we could follow a recipe, but maybe for something simple first. We would love to see a starter recipe that combines three sodas at precise ratios to form a color that matches a color swatch, so we know the machine is working correctly; a “calibration cocktail,” if you will.

If you want something else to tickle your chemistry itch, check out our Big Chemistry series or learn how big labs do automated chemistry.

Continue reading “Little Pharma On The Prairie”

The Possibility Of Reverting Time On The Ageing Of Materials

Everyone knows that time’s arrow only goes in one direction, regardless of the system or material involved. In the case of material time, i.e. the ageing of materials such as amorphous materials resulting from glass transition, this material time is determined after the initial solidification by the relaxation of localized stresses and medium-scale reordering. These changes are induced by the out-of-equilibrium state of the amorphous material, and result in changes to the material’s properties, such as a change from ductile to a brittle state in metallic glasses. It is this material time which the authors of a recent paper (preprint) in Nature Physics postulates to be reversible.

Whether or not this is possible is said to be dependent on the stationarity of the stochastic processes involved in the physical ageing. Determining this stationarity through the investigation of the material time in a number of metallic glass materials (1-phenyl-1-propanol, laponite and polymerizing epoxy) was the goal of this investigation by [Till Böhmer] and colleagues, and found that at least in these three materials to be the case, suggesting that this process is in fact reversible.

Naturally, the primary use of this research is to validate theories regarding the ageing of materials, other aspects of which have been investigated over the years, such as the atomic dynamics by [V.M Giordano] and colleagues in a 2016 paper in Nature Communications, and a 2022 study by [Birte Riechers] and colleagues in Science Advances on predicting the nonlinear physical ageing process of glasses.

While none of these studies will give us time-travel powers, it does give us a better understanding of how materials age over time, including biological systems like our bodies. This would definitely seem to be a cause worthy of our time.

Header image: Rosino on Flickr, CC BY-SA 2.0.

Fukushima Daiichi: Cleaning Up After A Nuclear Accident

On 11 March, 2011, a massive magnitude 9.1 earthquake shook the west coast of Japan, with the epicenter located at a shallow depth of 32 km,  a mere 72 km off the coast of Oshika Peninsula, of the Touhoku region. Following this earthquake, an equally massive tsunami made its way towards Japan’s eastern shores, flooding many kilometers inland. Over 20,000 people were killed by the tsunami and earthquake, thousands of whom were dragged into the ocean when the tsunami retreated. This Touhoku earthquake was the most devastating in Japan’s history, both in human and economic cost, but also in the effect it had on one of Japan’s nuclear power plants: the six-unit Fukushima Daiichi plant.

In the subsequent Investigation Commission report by the Japanese Diet, a lack of safety culture at the plant’s owner (TEPCO) was noted, along with significant corruption and poor emergency preparation, all of which resulted in the preventable meltdown of three of the plant’s reactors and a botched evacuation. Although afterwards TEPCO was nationalized, and a new nuclear regulatory body established, this still left Japan with the daunting task of cleaning up the damaged Fukushima Daiichi nuclear plant.

Removal of the damaged fuel rods is the biggest priority, as this will take care of the main radiation hazard. This year TEPCO has begun work on removing the damaged fuel inside the cores, the outcome of which will set the pace for the rest of the clean-up.

Continue reading “Fukushima Daiichi: Cleaning Up After A Nuclear Accident”

StratoSoar Glider Flies Itself From High Altitude

As the technology available to the average hacker and maker gets better and cheaper each year, projects which at one time might have only been within the reach of government agencies are inching closer to our grasp. Take for example the impressive work [Charlie Nicholson] has put into his StratoSoar series of autonomous gliders.

Dropped from several thousand feet by a high-altitude balloon, the glider’s avionics are designed to either guide it along a series of waypoints or head directly towards a specific target. Once at the given coordinates it can initiate different landing programs, such as spiraling down to the ground or releasing an onboard parachute. It’s an ambitious combination of custom hardware and software, made all the more impressive by the fact that it’s been put together by somebody who’s not yet old enough to have a driver’s license.

[Charlie] originally experimented with developing his own airframe using 3D printed components, but at least for now, found that a commercial off-the-shelf foam glider was a more practical option. All that’s required is to hollow out some areas to mount the servos, battery, and the avionics. This takes the form of a custom PCB that contains a ATSAMD21G18 microcontroller, an ICM-20948 inertial measurement unit (IMU), connections for GPS and LoRa modules, as well as several onboard sensors and some flash storage to hold collected data.

The goal of this open source project is to make these sort of unmanned aerial vehicles (UAVs) cheaper and more accessible for hobbyists and researchers. Eventually [Charlie] hopes to offer kits which will allow individuals to build and operate their own StratoSoar, making it even easier to get started. He’s currently working on the next iteration of the project that he’s calling StratoSoar MK3, but it hasn’t had a flight test yet.

We’ve seen various attempts to launch autonomous gliders from balloons in the past, but none from anyone as young as [Charlie]. We’re eager to see the StratoSoar project develop, and wish him luck in future test flights.

Continue reading “StratoSoar Glider Flies Itself From High Altitude”

Hands-on With New IPhone’s Electrically-Released Adhesive

There’s a wild new feature making repair jobs easier (not to mention less messy) and iFixit covers it in their roundup of the iPhone 16’s repairability: electrically-released adhesive.

Here’s how it works. The adhesive looks like a curved strip with what appears to be a thin film of aluminum embedded into it. It’s applied much like any other adhesive strip: peel away the film, and press it between whatever two things it needs to stick. But to release it, that’s where the magic happens. One applies a voltage (a 9 V battery will do the job) between the aluminum frame of the phone and a special tab on the battery. In about a minute the battery will come away with no force, and residue-free.

There is one catch: make sure the polarity is correct! The adhesive releases because applying voltage oxidizes aluminum a small amount, causing Al3+ to migrate into the adhesive and debond it. One wants the adhesive debonded from the phone’s frame (negative) and left on the battery. Flipping the polarity will debond the adhesive the wrong way around, leaving the adhesive on the phone instead.

Some months ago we shared that Apple was likely going to go in this direction but it’s great to see some hands-on and see it in action. This adhesive does seem to match electrical debonding offered by a company called Tesa, and there’s a research paper describing it.

A video embedded below goes through the iPhone 16’s repairability innovations, but if you’d like to skip straight to the nifty new battery adhesive, that starts at the 2:36 mark.

Continue reading “Hands-on With New IPhone’s Electrically-Released Adhesive”