plantpot made from recycled audio tape filament in a 3D printer. Pot contains a succulent plant and is surrounded by tape

3D Printer Filament From Reel-to-Reel Audio Tapes

At heart, 3D printers are just machines that can melt plastic “wire” into interesting shapes. It’s well-known and oft-lamented that plastic of various sorts has been used to make all manner of household objects that might eventually end up in landfill or otherwise littering the environment. With these facts in mind and a surplus of tape, [brtv-z] decided to see if he could recycle some old reel-to-reel audio tapes into working filament for a 3D printer.

The homebrew rig to convert old audio tape into the unconventional filament

This isn’t the first time he has tried to print with unusual second-hand polymers, back in 2020 he pulled of a similar trick using VHS tape. Through experimentation, it was soon determined that seven strands of quarter-inch tape could be twisted together and fused to form a very tough-looking filament approximately 1.7 mm in diameter, which could then be fed into the unsuspecting printer.

The resulting prints are certainly different in a number of respects from using virgin filament. The material is porous, brittle and (unsurprisingly) rather rusty-looking, but it does have some interesting properties.  It retains its magnetism and it catches the light in an unusual way. The video is after the break (in Russian, but YouTube does a reasonable job of generating English captions).

Don’t have any tape handy? No worries, we’ve also covered machines that can recycle plastic waste into filament before. In fact, two of them even won the 2022 Hackaday Prize. What else could you melt down that might otherwise be thrown away?

Continue reading “3D Printer Filament From Reel-to-Reel Audio Tapes”

AIOC: The Ham Radio All-In-One Cable For Audio And APRS

The Ham Radio All-in-one cable (AIOC) is a small PCB attachment for a popular series of radio transceivers which adds a USB-attached audio interface and virtual TTY port for programming and the push-to-talk function. The STM32F373 microcontroller (which, sadly is still hard to find in the usual channels) is a perfect fit for this application, with all the needed hardware resources.

With USB-C connectivity, the AIOC enumerates as a sound card as well as a virtual serial device, so interfacing to practically any host computer should be plug-and-play. Connection to the radio uses 12mm separation 3.5mm and 2.5mm TRS connectors, so is compatible with at least the Baofeng UV-5R but likely many other cheap transceivers that have the same physical setup.

Instructions are provided to use the AIOC with Dire Wolf for easy access to APRS applications, which makes a nice out-of-the-box demo to get you going. APRS is not all about tracking things though since other applications can sit atop the APRS/AX.25 network, for example, HROT: the ham radio of things.

We’ve seen quite a few Baofeng (and related products) hacks, like this sketchy pile of wires allowing one to experiment with the guts of the radio for APRS. Of course, such cheap radio transceivers cut so many engineering corners that there are movements to ban their sale, so maybe a new batch of better radios from our friends in the East is on the horizon?

Thanks to [Hspil] for the tip!

Audio Old And New Meet In Perfect Harmony

There’s an uneasy meeting in the world of audio between digital and analogue. Traditional analogue audio reached a level of very high quality, but as old-style media-based audio sources have fallen out of favor there’s a need to replace them with ones that reflect a new digital audio world. To do this there are several options involving all-in-one Hi-Fi separates at a hefty price, a cheaper range of dongles and boxes for each digital input, or to do what [Keri Szafir] has done and build that all-in-one box for yourself.

The result is a 1U 19″ rack unit that contains an Orange Pi for connectivity and streaming, a hard drive to give it audio NAS capability, plus power switching circuitry to bring all the older equipment under automation. Good quality audio is dealt with by using a Behringer USB audio card, on which in a demonstration of how even some digital audio is now becoming outdated, she ignores the TOSlink connector.

The rear panel has all the connectors for power, USB, network, and audio laid out, while the front has an array of status lights and switches. We particularly like the hand-written lettering, which complements this as a homebrew unit. It certainly makes the Bluetooth dongle dangling at the back of our amplifier seem strangely inadequate.

If audio is your thing, we had a look at some fundamentals of digital audio as part of our Know Audio series.

Tube Audio Amplifiers Needn’t Be Complex

There’s a mystique in audiophile circles about tube amplifiers. They can have a very nice sound which is attributed to their even-harmonic distortion, but they are often portrayed as requiring rare and expensive components. You don’t need matched gold-plated tubes and special transformers wound by Japanese monks with oxygen-free silver wire when the tube you’d have found in a TV back in the day paired with a repurposed mains transformer will do. [Mikremk] demonstrates this with a simple but effective amplifier using a PCL82 triode-pentode.

It’s a conventional tube amplifier circuit in which the triode is a preamplifier for the pentode power output stage. The pentode is running in class A mode, and the high impedance of its output is brought down to speaker impedance with that mains transformer. Best of all it doesn’t need a particularly high voltage, with the 40 V DC power coming from a DC-to-DC converter module.

These amplifiers could be found back in the day in some form in most consumer electronics, and remain a spectacularly cheap way to boast a tube amp in your hi-fi even if it might not always be the best possible amp.

Audio Amp Puts VFDs To Work In An Unusual Way

It’s safe to say that most projects that feature a VFD emphasize the “D” aspect more than anything. Vacuum fluorescent displays are solid performers, after all, with their cool blue-green glow that’s just the right look for lots of retro and not-so-retro builds. But that doesn’t mean there aren’t applications that leverage the “V” aspect, such as this nifty audio preamp using VFDs as active components.

The inspiration behind [JGJMatt]’s build came from the Korg Nutube line of VFD-based low-voltage dual-triode vacuum tubes. Finding these particular components a little on the expensive side, [JGJMatt] turned to the old standby DM160 VFD indicator tube, which is basically just a triode, to see how it would fare as an amp. The circuit takes advantage of the low current and voltage requirements of the VFDs — the whole thing runs from a USB boost converter — by wedging them between a 2N3904 input stage and a 2N2007 MOSFET output. There’s a mix of SMD and through-hole components on the custom-etched PCB, with a separate riser card to show off the VFDs a little bit through the front panel of the 3D printed case.

All in all, we find this little amp pretty cool, and we love the way it puts a twist on the venerable VFD. We’ve seen similar VFD amps before, but this one’s fit and finish really pays off.

App Detects Parkinsons Disease And COVID-19 Via Audio

One of the challenges of diagnosing diseases is identifying them early. At this stage, signs may be vague or confusing, or difficult to identify. Early diagnosis is often tied to the best possible treatment outcomes, so there’s plenty of incentives to improve methods in this way.

A new voice-based method of diagnosing disease could prove fruitful in this regard. It relies on machine learning techniques to detect when patients may be suffering from certain conditions.

Continue reading “App Detects Parkinsons Disease And COVID-19 Via Audio”

Know Audio: Stereo

In our occasional series charting audio and Hi-Fi technology we have passed at a technical level the main components of a home audio set-up. In our last outing when we looked at cabling we left you with a promise of covering instrumentation, but now it’s time instead for a short digression into another topic: stereo. It’s a word so tied-in with Hi-Fi that “a stereo” is an alternative word for almost any music system, but what does it really mean? What makes a stereo recording, and how does it arrive at your ears?

From West London Trains, To 3D Audio

A steam train passing through a station, from a distance in black and white
The driver of this Great Western Railway train had no idea that he was making audio history.

As most of you will know, a mono recording uses a single microphone and a single channel while a stereo one uses two microphones recording simultaneously a left and right channel. These are then played back through a pair of speakers, and the result is a sense of spatial field for the listener. Instruments appear to come from their relative positions when recorded, and the sense of being in the performance is enhanced.

Stereo recording as we know it was first perfected as one of the many inventions credited to Alan Blumlein, then working for EMI in London. We have one of his stereo demonstration films in “Trains at Hayes“, filmed from the EMI laboratories overlooking the Great Western Railway, and featuring a series of steam-hauled trains crossing the field of view with a corresponding stereo sound field. His work laid down the fundamentals of stereo recording, including microphone configurations and what would become the standard for stereo audio recording on disk with the channels on the opposite sides of a 45 degree groove. Continue reading “Know Audio: Stereo”