3D-Printed Prosthetic Puts The Power In The Hands Of Those Who Need It

In recent years, prosthetics have seen a dramatic increase in innovation due to the rise of 3D printing. [Nicholas Huchet] — missing a hand due to a workplace accident in 2002 — spent his residency at Fab Lab Berlin designing, building, testing and sharing the files and tutorials for a prosthetic hand that costs around 700 Euros.

[Huchet] founded Bionicohand with the intent of using the technology to make prosthetic limbs available to those without reliable medical or social assistance — as well as for amputees in countries without such systems — which can cost tens of thousands of dollars. The parts took a week to print while assembly and modifications to suit [Huchet’s] arm took another four days, but the final product is functional and uses affordable myoelectric sensors, boards and servos — plus there’s always the option of using a basic 3D scanner to accommodate for existing prosthetic mounts for the individual.

Continue reading “3D-Printed Prosthetic Puts The Power In The Hands Of Those Who Need It”

Would You Like A Satellite Dish?

Satellite dishes are a common site these days, although admittedly most of them are Ku- and Ka-band dishes. The older C-band dishes are still around, though, just less frequently in people’s yards. [Greenish Apple] decide to cut the cable and start watching free TV so he built a C-band dish. The trick is, he made the dish out of wood.

The design is the offset type, not a prime focus dish–that is, the electronics are not in the center of the dish but on the side. Wood isn’t particularly good at reflecting RF, of course, so over the wooden skeleton, he used flashing.

Continue reading “Would You Like A Satellite Dish?”

Bamboo Plant Becomes A Stylish Light Switch

If flipping a regular old light switch or pressing buttons isn’t an adequately pleasing way to use your appliances around the house, how about poking at the leaves of a plant to turn on your lamp? [Xkitz] has provided a thorough breakdown of how to turn any conductive object in your living space into a nifty capacitive touch switch that adds a bit of charm to such an everyday action.

Creating an electrostatic field around a conductive medium, the capacitive touch relay constantly monitors this field and will toggle when any minuscule change to the capacitance is detected. [Xkitz] uses a bamboo plant as his trigger. Gently touching any leaf will still act as an adequate trigger — as cool demonstration of how the electrostatic field works.

Continue reading “Bamboo Plant Becomes A Stylish Light Switch”

Retrotechtacular: Home Video Recording

The news has been full of reports that the last company manufacturing consumer VCRs will cease making them this year. I think most of us are surprised that the event is only happening now. After all, these days, video recording is likely to be on a hard drive, a USB stick, or on a server somewhere. Even recording to DVDs seems a bit quaint these days.

VCR-03Back before there were web sites, people had to get information from magazines like Popular Electronics, Radio Electronics, and a few others. In the late 1960s and early 1970s, it was common to see these magazines predict that this would be the year of the home video recording system. For example, in 1971, [Lou Garner] wrote: “…they [Sony] hope will put home videotape playing in the same living room as conventional high-fidelity sound systems.” You should know that the video cassette he was talking about was 8 inches wide by 5 inches deep (a big larger than a VHS tape) and contained 3/4 inch magnetic tape (VHS used 1/2 inch tape). The 32-pound player had a retail price of about $350 (about $2,000 in today’s dollars; remember gas was $0.36 a gallon and eggs were $0.53 a dozen). It would be several years before VHS and Betamax would duke it out for home supremacy.

Continue reading “Retrotechtacular: Home Video Recording”

Fitness Tracker Teardown Is A Lesson In Design For Manufacture

If the trends are anything to go on, after the success of Fitbit we are nearing a sort of fitness tracker singularity. Soon there will be more fitness trackers on wrists and ankles then there will be stars in the sky. We will have entire generations who will grow up not knowing what life is like without the ever-present hug of a heart monitor strapped across their chest. Until then though, we can learn a bit of design for manufacture from this excellent teardown of a watch shaped fitness tracker.

This tracker has a nice round e-paper screen, which could be a welcome part in a project if they start washing up on the shores of eBay. The rest of the watch is a basic Bluetooth low energy module and the accessory electronics wrapped in a squishy plastic casing.

There’s a lot of nice engineering inside the watch. As far as the electronics go, it’s very low power. On top of that is plenty of clever cost optimization; from a swath of test points to reduce quality issues in the hands of consumers to the clever stamped and formed battery tabs which touch the CR2032 that powers it.

The teardown covers more details: the switch, what may be hiding behind the epoxy globs, the plastics, and more. One thing that may be of interest to those that have been following Jenny’s excellent series is the BOM cost of the device. All in all a very educational read.

Hand Waving Unlocks Door

Who doesn’t like the user interface in the movie Minority Report where [Tom Cruise] manipulates a giant computer screen by just waving his hands in front of it? [AdhamN] wanted to unlock his door with hand gestures. While it isn’t as seamless as [Tom’s] Hollywood interface, it manages to do the job. You just have to hold on to your smartphone while you gesture.

The project uses an Arduino and a servo motor to move a bolt back and forth. The gesture part requires a 1sheeld board. This is a board that interfaces to a phone and allows you to use its capabilities (in this case, the accelerometer) from your Arduino program.

The rest should be obvious. The 1sheeld reads the accelerometer data and when it sees the right gesture, it operates the servo. It would be interesting to do this with a smart watch, which would perhaps look a little less obvious.

We covered the 1sheeld board awhile back. Of course, you could also use NFC or some other sensor technology to trigger the mechanism. You can find a video that describes the 1sheeld below.

Continue reading “Hand Waving Unlocks Door”

Hackaday Prize Entry: Lucid Dreaming Research

Lucid dreaming is one of the rare psychological phenomenon terrible sci-fi frequently gets right. Yes, lucid dreaming does exist, and one of the best ways to turn a normal dream into a lucid dream is to fixate on a particular object, sound, or smell. For their Hackaday Prize entry, [Jae] is building a device to turn the electronic enthusiast community on to lucid dreaming. It’s a research platform that allows anyone to study their own dreams and access a world where you can do anything.

The core of this project is an 8-channel EEG used to measure the electrical activity in the brain during sleep. These EEG electrodes are fed into a 24-bit ADC which is sampled 250 times per second by an ARM Cortex M4F microcontroller. The captured data is recorded or sent to a PC or smartphone over a Bluetooth connection where a familiar sound can be played (think of the briefcase in Inception), or some other signal that will tell the dreamer they’re dreaming.

We’ve seen a few similar builds in the past, most famously a NeuroSky MindWave headset turned into a comfortable single-channel EEG-type device. The NeuroSky hardware is limited, though, and a setup with proper amplifiers and ADCs will be significantly more helpful in debugging the meatspace between [Jae]’s ears.