2024 Business Card Challenge: CardTunes Bluetooth Speaker

A business card form factor can be quite limiting, but that didn’t stop [Schwimmflugel] from creating CardTunes, an ESP32-based Bluetooth audio speaker that tried something innovative to deliver the output.

What’s very interesting about this design is the speaker itself. [Schwimmflugel] aimed to create a speaker out of two coils made from flexible circuit board material, driving them with opposite polarities to create a thin speaker without the need for a permanent magnet.

The concept is sound, but in practice, performance was poor. One could identify the song being played, but only if holding the speaker up to one’s ear. The output was improved considerably with the addition of a small permanent magnet behind the card, but of course this compromised the original vision.

Even though the concept of making a speaker from two flexible PCB panel coils had only mixed success, we love seeing this kind of effort and there’s a lot to learn from the results. Not to mention that it’s frankly fantastic to even have a Bluetooth speaker on a business card in the first place.

The 2024 Business Card Challenge is over, but judging by all the incredible entries we received, we’re thinking it probably won’t be too long before we come up with another sized-constrained challenge.

Continue reading “2024 Business Card Challenge: CardTunes Bluetooth Speaker”

Do Your Research

We were talking about a sweet hack this week, wherein [Alex] busts the encryption for his IP web cam firmware so that he can modify it later. He got a number of lucky breaks, including getting root on the device just by soldering on a serial terminal, but was faced with having to reverse-engineer a binary that implemented RSA encryption and decryption.

Especially when they’re done right, and written to avoid side-channel attacks, encryption routines aren’t intuitive, even when you’re looking at the C source. Reversing it from the binary would be a tremendous hurdle.

That’s when [Alex] started plugging in strings he found in the binary into a search engine. And that’s when he found exactly the open source project that the webcam used, which gave him the understanding he needed to crack the rest of the nut.

Never forget! When you’re doing some reverse engineering, whether hardware or software, do a search for every part number and every string you find in memory. If you’re like me, it might feel like cheating a little bit, but it’s just being efficient. It’s what all your hacker heroes say they do, and if you’re lucky, it might just be the break you need too.

Sealed Packs Of Pokémon Cards Give Up Their Secrets Without Opening Them

[Ahron Wayne] succeeded in something he’s been trying to accomplish for some time: figuring out what’s inside a sealed Pokémon card packet without opening it. There’s a catch, however. It took buying an X-ray CT scanner off eBay, refurbishing and calibrating it, then putting a load of work into testing and scanning techniques. Then finally combining the data with machine learning in order to make useful decisions. It’s a load of work but [Ahron] succeeded by developing some genuinely novel techniques.

While using an X-ray machine to peek inside a sealed package seems conceptually straightforward, there are in fact all kinds of challenges in actually pulling it off.  There’s loads of noise. So much that the resulting images give a human eyeball very little to work with. Luckily, there are also some things that make the job a little easier.

For example, it’s not actually necessary to image an entire card in order to positively identify it. Teasing out the individual features such as a fist, a tentacle, or a symbol are all useful to eliminate possibilities. Interestingly, as a side effect the system can easily spot counterfeit cards; the scans show up completely different.

When we first covered [Ahron]’s fascinating journey of bringing CT scanners back to life, he was able to scan cards but made it clear he wasn’t able to scan sealed packages. We’re delighted that he ultimately succeeded, and also documented the process. Check it out in the video below.

Continue reading “Sealed Packs Of Pokémon Cards Give Up Their Secrets Without Opening Them”

Robot Seeks And Sucks Up Cigarette Butts, With Its Feet

It would be better if humans didn’t toss cigarette butts on the ground in the first place, but change always takes longer than we think it should. In the meantime, researchers at the Italian Institute of Technology have used the problem as an opportunity to explore what seems to be a novel approach: attaching vacuum pickups to a robot’s feet, therefore removing the need for separate effectors.

VERO (Vacuum-cleaner Equipped RObot) is a robotic dog with a vacuum cleaner “backpack” and four hoses, one going down each leg. A vision system detects a cigarette butt, then ensures the robot plants a foot next to it, sucking it up. The research paper has more details, but the video embedded below gives an excellent overview.

While VERO needs to think carefully about route planning, using the legs as effectors is very efficient. Being a legged robot, VERO can navigate all kinds of real-world environments — including stairs — which is important because cigarette butts know no bounds.

Also, using the legs as effectors means there is no need for the robot to stop and wait while a separate device (like an arm with a vacuum pickup) picks up the trash. By simply planting a foot next to a detected cigarette butt, VERO combines locomotion with pickup.

It’s fascinating to see how the Mini Cheetah design has really become mainstream to the point that these robots are available off-the-shelf, and it’s even cooler to see them put to use. After all, robots tackling trash is a good way to leverage machines that can focus on specific jobs, even if they aren’t super fast at it.

Continue reading “Robot Seeks And Sucks Up Cigarette Butts, With Its Feet”

Modern In-Circuit Emulator For The 6809

The Motorola 6809, released in 1978, was the follow-up to their 6800 from four years earlier. It’s a powerful little chip with many 16-bit features, although it’s an 8-bit micro at heart. Despite its great improvements over the 6800, and even technical superiority over the Z80 and 6502 (hardware multiply, for example!), it never reached the same levels of success that those chips did. However, there are still some famous systems, such as the TRS-80 Colour Computer, which utilized the chip and are still being hacked on today. [Ted] is clearly a fan of the 6809, as he used a Teensy 4.1 to create a cycle-exact, drop-in 6809 emulator!

A small interposer board rearranges the Teensy pinout to match the 6809, as well as translating voltage levels from 3.3V to 5V. With careful design, the Teensy matches the cycle diagrams in the Motorola datasheet precisely, and so should be able to run any applications written for the chip! A great test was booting Extended Colour BASIC for the TRS-80 CoCo 2 and running some test BASIC programs. Any issues with opcode decoding or timing would certainly be exposed while running an interpreted language like BASIC. After this successful test, it was time to let the Teensy’s ARM Cortex-M7 rip and see what it could do.

Continue reading “Modern In-Circuit Emulator For The 6809”

The Continuing Venusian Mystery Of Phosphine And Ammonia

The planet Venus is in so many ways an enigma. It’s a sister planet to Earth and also within relatively easy reach of our instruments and probes, yet we nevertheless know precious little about what is going on its surface or even inside its dense atmosphere. Much of this is of course due to planets like Mars getting all the orbiting probes and rovers scurrying around on its barren, radiation-blasted surface, but we had atmospheric probes descend through Venus’ atmosphere, so far to little avail. Back in 2020 speculation arose of phosphine being detected in Venus’ atmosphere, which caused both excitement and a lot of skepticism. Regardless, at the recent National Astronomy Meeting (NAM 2024) the current state of Venusian knowledge was discussed, which even got The Guardian to report on it.

In addition to phosphine, there’s speculation of ammonia also being detectable from Earth, both of which might be indicative of organic processes and thus potentially life. Related research has indicated that common amino acids essential to life on Earth would be stable even in sulfuric droplets like in Venus’ atmosphere. After criticism to the original 2020 phosphine article, [Jane S. Greaves] et al. repeated their observations based on feedback, although it’s clear that the observation of phosphine gas on Venus is not a simple binary question.

The same is true of ammonia, which if present in Venusian clouds would be a massive discovery, which according to research by [William Bains] and colleagues in PNAS could explain many curious observations in Venus’ atmosphere. With so much uncertainty with remote observations, it’s clear that the only way that we are going to answer these questions is with future Venus missions, which sadly remain rather sparse.

If there’s indeed life on Venus, it’ll have a while longer to evolve before we can go and check it out.

Desiccants, Tested Side By Side

We’re so used to seeing a little sachet of desiccant drop out of a package when we open it, that we seldom consider these essential substances. But anyone who spends a while around 3D printing soon finds the need for drying their filament, and knowing a bit about the subject becomes of interest. It’s refreshing then to see [Big Clive] do a side-by-side test of a range of commonly available desiccants. Of silica gel, bentonite, easy-cook rice, zeolite, or felight, which is the best? He subjects them to exactly the same conditions over a couple of months, and weighs them to measure their efficiency in absorbing water.

The results are hardly surprising, in that silica gel wins by a country mile. Perhaps the interesting part comes in exploding the rice myth; while the rice does have some desiccant properties, it’s in fact not the best of the bunch despite being the folk remedy for an immersed mobile phone.

Meanwhile, this isn’t the first time we’ve looked at desiccants, in the past we’ve featured activated alumina.

Continue reading “Desiccants, Tested Side By Side”