Get Your Hackaday Belgrade Tickets Now

We have just opened up registration for Hackaday | Belgrade — a hardware conference on April 9th. Get your ticket now and make arrangements to visit Belgrade this Spring. Tickets are inexpensive, travel costs from other parts of Europe are very reasonable, the weather will be beautiful, and the all-day madness that we have planned will make you wish it were a week instead of just sixteen hours. These tickets will sell out so please share this post with your friends so they are not left ticketless.

Packed with Amazing People

mike
If you don’t recognize the name you will almost certainly recognize his internet persona: Mike’s Electric Stuff. He’s been regularly featured on the front page of Hackaday as he churns out a unique body of work like tearing down Flir’s low-end gear to discover it’s identical to their high-end offerings.

Hackaday is a global community and that is what makes Hackaday | Belgrade spectacular. We are still accepting proposals for talks through February 15th but haven’t yet made all of the decisions regarding presenters — you should submit a proposal! We’ll publish an article about all of the presenters once we have wrapped up the call for proposals. Expect to hear back about this around February 22nd.

One thing I am very excited about is that Mike Harrison will be at the conference. His talk will cover his exploration of an absurdly expensive and complicated relic which was used in the 1950’s for large-format video projection. Mike’s ability to unlock understanding of complex (and awesome) electronics is quite amazing; this talk is not to be missed. But Mike is just one of a dozen presenters from all over Europe. Several members of the Hackaday crew will be on hand and the venue will be packed with hundreds of fellow hardware hackers. You won’t want to miss this.

You Will Hack This Badge

hackaday-belgrade-badge-prototypeThis is the first Hackaday event where we have an active electronic badge. Voja Antonic has been hard at work with the design and just published the first details a few days ago.

The central feature of the badge is an 8×16 LED matrix driven by a PIC microcontroller. It’s running a USB bootloader which will let you flash your own custom code without needing a programmer. We were speaking with some of our friends over at Microchip regarding the bootloader and they offered to supply all the microcontrollers for the badge, an offer we were happy to accept.

Voja has already programmed the first demo application seen here, it’s Tetris written in assembly language. Impressive!

We were overwhelmed by the popularity of badge hacking at the Hackaday SuperConference last November. You can bet that badge hacking will be one of the most popular activities at Hackaday Belgrade. I have written a hardware emulator to work on some animations. It uses the SDL2 library to display the LED matrix and take three button inputs (the final badge design will have four buttons arranged in up/down/left/right configuration). Our hope is to host a demoscene competition that is open to anyone, whether you can attend the conference or not. More on that later.

Live Music and Hacking

As the evening sets in and the talks wind down, we have lined up bands and DJs to take the stage and carry us well into night. You won’t have to stop the badge hacking or anything else that you’re into, but you won’t have to solder in silence either.

As you can tell, this conference goes way beyond talks. This is hardware culture and you’ve just got to be there. Running from 10am until 2am, there’s more than enough to keep you occupied for one day. But make sure to hang out on the event page to get inside information on other non-formalized social events that will happen the night before and the day after. See you in Belgrade!

The Coming Age Of 3D Integrated Circuits

The pedagogical model of the integrated circuit goes something like this: take a silicone wafer, etch out a few wells, dope some of the silicon with phosphorous, mask some of the chip off, dope some more silicon with boron, and lay down some metal in between everything. That’s an extraordinarily basic model of how the modern semiconductor plant works, but it’s not terribly inaccurate. The conclusion anyone would make after learning this is that chips are inherently three-dimensional devices. But the layers are exceedingly small, and the overall thickness of the active layers of a chip are thinner than a human hair. A bit of study and thought and you’ll realize the structure of an integrated circuit really isn’t in three dimensions.

Recently, rumors and educated guesses coming from silicon insiders have pointed towards true three-dimensional chips as the future of the industry. These chips aren’t a few layers thick like the example above. Instead of just a few dozen layers, 100 or more layers of transistors will be crammed into a single piece of silicon. The reasons for this transition range from shortening the distance signals must travel, reducing resistance (and therefore heat), and optimizing performance and power in a single design.

The ideas that are influencing the current generation of three-dimensional chips aren’t new; these concepts have been around since the beginnings of the semiconductor industry. What is new is how these devices will eventually make it to market, the challenges currently being faced at Intel and other semiconductor companies, and what it will mean for a generation of chips several years down the road.

Continue reading “The Coming Age Of 3D Integrated Circuits”

A Wireless Wood Stove Monitor

[Michel] has a wood stove in his basement for extra heat in the winter. While this is a nice secondary heat source, he has creosote buildup in the chimney to worry about. [Michel] knows that by carefully monitoring the temperature of the gases in the chimney, he can hit the sweet spot where his fire burns hot enough to keep the creosote under control and cool enough that it doesn’t burn down the house. To that end, he built a wireless wood stove monitor.

The first version he built involved an annoying 20 foot run between the basement and living room. Also, the thermocouple was mounted on the surface and made poor contact with the chimney. Wood Stove Monitor 2.0 uses a probe thermometer on an Exhaust Gas Temperature (EGT) thermocouple to measure the temperatures. The intel is fed to a thermocouple amplifier to provide a cold-compensation reference. This is shielded so that radiant heat from the stove doesn’t compromise the readings. An nRF24L01+ in the basement monitoring station communicates with another module sitting in the living room display so [Michel] can easily find out what’s going on downstairs. When it’s all said and done, this monitor will be part of a bigger project to monitor power all over the house.

Interested in using a wood stove to help heat your house? Why not build your own?

Thermaltake Gets On The 3D Printing Bandwagon

We’re interested by a move from Thermaltake, a manufacturer of computer cases, fans, and power supplies. Thermaltake has released a computer case designed to be modded by those with a 3D printer. They released a set of models that fits the new case. These are all hosted on a service much like Thingiverse. So if you want a single SSD or a whole rack, print the model. Watercooling? There’s a model for that. In concept, it’s very cool.

We’re not certain how to feel about this. Our initial impression was that if Thermaltake is going to launch a case around 3D printing, they should at lease tune their printer and get some nice prints before they take the press photos. On our second pass we became intrigued. Is this a manufacturer cutting costs, crowd-sourcing design and engineering talent for free, or empowering the user? Arguably, a computer case is a great test bed for this kind of interaction.

Despite out skepticism, we’d like to see more manufacturers take this kind of contributing interest in 3d printing. If only to see where it goes. What other products do you think would benefit from this kind of, print the product you actually want model?

Greased Lightning Shows 360 Degrees

A lot of people got drones for Christmas this year (and many Hackaday readers already had one, anyway). A lot of these drones have cameras on them. The expensive ones beam back live video via RF. The cheaper ones just record to an SD card that you can download later.

If you are NASA, of course, this just isn’t good enough. At the Langley Research Center in Virginia, they’ve been building the Greased Lightning (also known as the GL-10) which is a 10-engine tilt-prop unmanned aerial vehicle. The carbon fiber drone is impressive, sure, but what wows is the recent video NASA released (see below).

Continue reading “Greased Lightning Shows 360 Degrees”

Robo Car Via 3G

[Emil Kalstø] has a pretty solid remote control car. We don’t mean a little car with a handheld remote you can drive around the neighborhood. [Emil’s] car has a camera and a cell phone so that it can go anywhere there’s 3G or 4G networking available.

The video (see below) shows the results (along with [Emil’s] little brother acting as a safety officer). The video offers tantalizing detail you might find useful if you want to reproduce a similar vehicle. However, it stops short of providing complete details.

The two batteries onboard will power the vehicle for over 20 hours of continuous use. The 30W motor is reduced with a chain drive to go about “walking speed.” There’s a Raspberry Pi with a Huawei 3G USB dongle onboard and [Emil] uses an XBox controller to do the steering from the warmth of his living room. Of course, a Pi can’t handle a big motor like that directly, so a Phidgets USB motor controller does the hard work. The software is written using Node.js.

The camera mount can swivel 230 degrees on a servo so that the operator can scan the road ahead. The video mentions that steering the car required a heavy-duty servo with metal gears (an earlier attempt with nylon gears didn’t work out).

Overall, it looks like a solid build. We hope [Emil] will share code and more details soon. If you can’t wait (and your insurance is paid up), you might have a go at an even bigger car. Surprisingly, there’s more than one example of that.

Continue reading “Robo Car Via 3G”

Hackaday Links: February 7, 2016

For a very long time, the original, 11 foot-long on-screen model of the USS Enterprise from Star Trek the original series – “NCC one seven O one. No bloody A, B, C, or D.” – was housed in the Smithsonian’s Air and Space Museum in Washington, DC. Recent visitors may have noticed the Enterprise is no longer on display. It’s being restored by the finest aircraft conservators in the world. There are a few great videos showing off how much goes into restoring a cultural icon.

Last weekend Hackaday visited Sparklecon in Fullerton, CA. This means I was in LA on the last Saturday of the month. What’s so special about that? The W6TRW Swap Meet at Northrop Grumman in Redondo Beach. Here’s the pics from that. The best thing I found? A wooden acoustic coupler modem for $15. Once I told the guys at the booth what it was, the price went up to $20. Still worth it.

What’s the worst thing about modern computers? They’re all LCDs, and that means worse resolution, terrible colorspace, and monitors that are very, veeeerrrrryyyy wide. The consequence of this is a complete and total lack of screen savers. Never fear, because the flying toaster is back, this time as an SD card holder. It’s 3D printable, so if you have some white, silver, and black filament sitting around, you know what to do.

The USB Killer hit the tips line a few times this week for inexplicable reasons. We’ve seen it before, but we haven’t seen it again. Surprisingly, no one – outside a bizarre Indiegogo campaign that shouldn’t exist – has made their own USB killer. Here’s your call to action: build a USB killer, and I’ll test it out.

An SDIP-64 chip compared to a DIP-28 chip. Note the finer lead spacing on the SDIP device.
An SDIP-64 chip compared to a DIP-28 chip. Note the finer lead spacing on the SDIP device.

There’s more variety to your standard DIP-packaged chips than you might expect. The weirdest of these – at least when it comes to perfboard construction – is the SDIP, or Skinny Dual In-line Package. Instead of having a standard 0.1″ pitch between leads, the SDIP has a 0.070″ pitch. [Chuck] was having some problems looking for SDIP to DIP adapters until he found this amazing trick the connector companies don’t want you to know aboutJust plop the chip in at a 45º angle, bend a few pins, and you’re good to go.