Are Powdered Metal Fuels Just A Flash In The Pan?

It’s no secret that fossil fuels are quickly becoming extinct. As technology charges ever forward, they are disappearing faster and faster. Many of our current dependencies on fossil fuels are associated with high-energy applications like transportation. Since it’s unlikely that global transportation will ever be in decline for any reason other than fuel shortage itself, it’s imperative that we find something that can replicate the high energy density of fossil fuels. Either that, or go back to the drawing board and change the entire scope of global transportation.

Energy, especially solar and wind, cannot be created all over the world. Traditionally, energy is created in situ and shipped to other places that need it. The proposed solutions for zero-carbon energy carriers—batteries and hydrogen—all have their weaknesses. Batteries are a fairly safe option, but their energy density is pretty poor. Hydrogen’s energy density is higher, but its flammability makes it dangerously volatile to store and transport.

Recently, a group of researchers at McGill University in Canada released a paper exploring the use of metal powders as our zero-carbon fuel of the future. Although metal powders could potentially be used as primary energy sources, the transitory solution they propose is to use them as secondary sources powered by wind and solar primaries.

Continue reading “Are Powdered Metal Fuels Just A Flash In The Pan?”

Split-flap Train Display Uses Punch Cards; Serviced With Station Ingenuity

short but highly detailed documentary by [Krzysztof Tyszecki] explores the split-flap display system in place at the Łódź Kaliska train station in Poland as well as the efforts needed by the staff to keep it running and useful to this day. Split-flap displays might be old technology, but many are still in use throughout the world. But even by those standards, the unit at Łódź Kaliska is a relic you wouldn’t expect to see outside a museum. “I doubt you’ll find an original anywhere else,” says a staff member. It requires constant upkeep to remain operational, and meeting the changing demands of a modern station within the limitations of the original system takes some cleverness. “In general the failure rate of the device is terrible,” he adds.

Operator console for Czech PragotronThe system runs on punch cards. You can’t buy them anymore, so a local printer makes them – several hundred are needed every time there is a schedule change. The punching pliers (which also can no longer be purchased) get so worn out they replace the pins with custom-made ones from a local locksmith. The moving parts of the card reader have split-pins which need to be replaced every week or two – the stress of repeated movement simply wears them away. There’s nothing to do but replace them regularly. The assembly needs regular cleaning since dust accumulates on the cards and gets into the whole assembly. The list goes on… and so does the station.

There is no computation in the modern sense – it’s an electromechanical signing system managed and updated by human operators. It has more in common with a crossbar switch based telephone exchange than anything else. The punch cards are just a means of quickly, accurately, and repeatedly setting the displays to known states.

The short documentary goes into a lot of detail about every part of the system. The cards themselves are described in detail (1:07), as is the operator’s routine (2:27). We even see the back end controller (9:41), as well as see a split-flap module taken apart and tested (14:33) with an old tester the staffer isn’t sure will even work – but as with everything else we see, of course it does.

Split-flap displays are fascinating pieces of technology. We have even seen people build their own split-flap displays from scratch!

Continue reading “Split-flap Train Display Uses Punch Cards; Serviced With Station Ingenuity”

Casting A Lathe Out Of Concrete

Look up ‘concrete lathe’ and you’ll quickly find yourself reading the works of [David Gingery]. His series of books on building a machine shop from scrap begin with a charcoal foundry, and quickly move to creating a metal lathe out of concrete. Before [Gingery]’s lathe, around the time of World War I, many factories created gigantic machine tools out of concrete. It’s an old idea, but you’ll be hard pressed to find anyone with a shop featuring concrete machine tools. Cheap lathes are plentiful on Craigslist, after all.

Building a metal lathe from concrete is more of a challenge. This challenge was recently taken up by [Curt Filipowski] in a five part YouTube series that resulted in a real, working lathe made out of concrete, scrap, and a lot of bolts.

The concrete lathe begins with a form, and for this [Curt] cut out all the parts on a CNC router. Creating the form isn’t quite as simple as you would think – the concrete form included several bolts that would alow [Curt] to bolt bearings, ways made out of gas pipe, and angle iron. This form was filled with concrete in [Curt]’s kitchen, and after a nice long cure, the lathe was moved up to the upstairs shop. That’s a five hundred pound block moved up a flight of stairs by a single person.

The rest of the build deals with the cast concrete carriage which rides along the polished gas pipe ways, a tool post holder milled out of a block of aluminum, and finally making some chips. While it’s not the most practical lathe – the carriage moves along the ways by turning a wheel underneath the tailstock – it does demonstrate a concrete lathe is possible.

Continue reading “Casting A Lathe Out Of Concrete”

Good News! It’s The Dacia 1310!

Although we’ve never had the privilege to drive one, [skaarj] tells us Dacia made some terrible cars. The Dacia 1310, a communist clone of the Renault 12, was cheap, had sixty-two horses under the hood, and was easy to maintain. The cabin, by all accounts, is a bit lacking, giving [skaarj] the opportunity to improve the instrument cluster and dash. He’s not throwing a stereo in and calling it a day – [skaarj] is upgrading his Dacia with retro-futuristic components including a vacuum tube amp, a CRT computer display, and an unspeakably small dumb terminal.

[skaarj]’s build began with a hit and run accident. With most of the body panels on the passenger side of the car removed, [Skaarj] ground some rust, rattle canned some rust proof paint, and bondoed the most offensive corrosion. Work then began on the upgraded dash, with a few choice components chosen including an old Soviet television, a hardware neural network to determine hardware faults, and a bizarre implementation of a CAN bus on a car without any of the requisite electronics.

This is one of those projects that can go on forever; there’s a lot you can do with the dashboard of a car if you’re not constrained by a suffocating desire to appear normal. In that respect, [skaarj] has this one locked up – he’s got a vacuum tube amplifier and enough CRTs in this car to add retro satellite navigation. It’s a great entry for The Hackaday Prize, as something cool is sure to come out of this project.

The HackadayPrize2016 is Sponsored by:

Death, Taxes, And Laundry

There’s an old saying that the only two things that are certain are death and taxes. However, unless you live in a nudist colony, there’s probably also laundry. [Darpan Bajaj] and some friends were at a hackathon and decided to put their washing machine on the Internet.

Most of us here at Hackaday — and many Hackaday readers, judging by the comments — are a little suspicious about how much we really need everything attached to the Internet. However, a washing machine is probably not a bad idea: you use it often, you need to know when it is done, and you probably don’t want to just sit and watch it spin. Besides, the intended installation is in a hostel where there are multiple machines and many potential users.

Continue reading “Death, Taxes, And Laundry”

Add Bluetooth To A Cheap Electronic Lock

[James] works from home. His office is filled with objects that can be described with adjectives such as, “expensive,” and, “breakable.” His home, however, is filled with professional object-breakers known as children. To keep these two worlds from colliding, he installed a keypad lock on his office door. The potential side-effect of accidentally training his children to be master safe-crackers aside, the system seems to work so far.

However, being a hacker, the tedium of entering a passcode soon grew too heavy for him. Refusing to be a techno-peasant, he set out to improve his lock. The first step was to reverse engineer the device. The lock is divided into two halves, one has a keypad and handle, the other actually operates the lock mechanism. They are connected with a few wires. He hooked an oscilloscope to the most likely looking candidates, and looked at the data. It was puzzling at first, until he realized one was a wake-up signal, and the other was the data. He then hooked the wires up to a Bluetooth-enabled Arduino, and pressed buttons until he had all the serial commands the door lock used.

After that it was a software game. He wrote code for his phone and the Arduino to try out different techniques and work out bugs. Once he had that sorted, he polished the app and code until he reached his goal. All of the code is available on his GitHub.

Finally, through his own hands, he elevated himself from techno-peasant to wizard. He need but wave his pocket oracle over the magic box in front of his wizard’s lair, and he will be permitted entry. His wizardly trinkets secure from the resident orcs, until they too begin their study of magic.

Bluetooth Water Cannon Junk Build Shoots Into Our Hearts

We’ve seen a few remote controlled turret builds in the past, but this one from [Noel Geren] is pretty neat: it shoots water and uses Bluetooth Low Energy (BLE) for control. Check it out in action in the video below.

[Noel] used the guts of a Nerf Thunderstrike water gun for the firing mechanism, combined with a 3D-printed enclosure and a servo that rotates the turret top. The pump from the gun is connected to a simple relay that replaces the trigger. Both the relay and the servo are connected to an RFDuino with a servo shield, which is programmed to respond to simple commands to rotate and fire.

It’s a nice junk build, and [Noel] has released all of the files for download if you want to build your own. It would make a nice weekend build or a project to do with the kids.

Continue reading “Bluetooth Water Cannon Junk Build Shoots Into Our Hearts”