Alpha Radiation Visualizer

alpha visualizer

[Jared Bouck] certainly has a unique project on his hands this time. He started out wanting to build a somewhat complex system for visualizing Cherenkov radiation. With a little investigation he found some new ideas and decided to build a really compact apparatus. Cherenkov radiation is seen as a blue flash when a particle passes through a medium at a speed greater than the speed of light in the medium. Jared used a webcam CCD as the medium and a small piece of radioactive americium sourced from a smoke detector. The camera housing is sealed from any light leaks and is shielded to block EMI. Watching the camera output you can see flashes of white and blue streaks.  It’s a neat home built demo and I bet it could be used as a random number generator as well. In the real world, scientists use Cherenkov radiation detection to determine fission reaction intensity, measure radioactivity in spent fuel rods, and detect the origin of cosmic rays. Similar techniques are used in neutrino detectors like the massive IceCube project.

Continue reading “Alpha Radiation Visualizer”

Congratulations Low-Power Winners

Congratulations to the winners of the 2023 Hackaday.io Low Power Contest! We challenged you to show us how much you could do with how little, and you did not disappoint. Our judges have put their heads together, and thanks to Digi-Key, our contest sponsor, the top three entries will be taking home a $150 gift certificate for yet more hacking supplies.

We saw a great diversity of ideas here, all on the low-power theme. So without further ado…

The Prize Winners

[Christoph]’s Ultra Low Power RF-Sensor arose out of necessity. Having just repaired a shower drain, he couldn’t be sure that it wouldn’t start leaking again at some point in the future, but couldn’t go ripping up the floor under the shower tray every week to check. He needed a remote moisture sensor that would do the job for a long time with no intervention.

This superb solution combines an Atmel ATmega328P, an HDC1080 humidity sensor, a 433 MHz radio transmitter, and an RTC to keep power consumption super-low when everything else is shut down. Idling at 600 nA total most of the time, taking a reading every 15 minutes, this device should last for 12 years, and it’s been installed and running for five so far, so we’d say that it’s already proven itself very worthy of taking home the prize here.

[BleakyTex]’s Compact, low-power Geiger counter is absolutely the lowest power Geiger counter we’ve ever seen and maybe also the cutest. With the ambitious goal of running up to two years on two tiny LR44 batteries and a proven runtime of about six months by now, this is the radiation detector you can take with you every day, should you need to. The key is a custom HV section that’s designed for efficiency and the screen – even today, it’s still hard to beat the low power consumption of the humble LCD screen. All this, and it still makes those satisfying clicks when it’s enabled. [BleakyTex] says he might make a kit from this, and we absolutely hope he does!

[mircemk]’s Microwatt Pulse Motor took one of our suggestions in the announcement of the contest and ran with it. This eight-pole handmade electric motor doesn’t actually do anything other than spin, but it does that when hooked up to a literal potato. Pulling around 40 mA at 600 mV, it can easily run on solar power with enough power left over to charge up a battery for when the sun doesn’t shine. All of this is made with extremely simple circuitry and parts scavenged from old relays with a sewing needle held up by a magnet for the bearing. This is pure ingenuity and a sweet low-power demo.

Continue reading “Congratulations Low-Power Winners”

The Radioactive Source Missing In Australian Desert Has Been Found

Nuclear material is relatively safe when used, stored, and managed properly. This generally applies to a broad range of situations, from nuclear medicine to nuclear power generation. Some may argue it’s impossible to use nuclear weapons safely. In any case, stringent rules exist to manage nuclear material for good reason.

Sometimes, though, things go wrong, mistakes are made, and that nuclear material ends up going AWOL. That’s the situation that faced authorities in Australia, as they scoured over a thousand kilometers of desert highway for a tiny missing radioactive source with the potential to cause serious harm. Thankfully, authorities were able to track it down.

Continue reading “The Radioactive Source Missing In Australian Desert Has Been Found”

Single Photon Detection With Photomultipliers

Unless you are an audiophile, you likely think of tubes as mostly relegated to people who work on old technology. However, photomultiplier tubes are still useful compared to more modern sensors, and [Jaynes Network] has a look into how they work, especially with scintillating detectors.

The RCA photomultiplier he examines has ten stages and can detect even a single photon. Combined with a scintillating detector, they make good radiation detectors.

We can’t help but smile when we hear someone obviously in love with the engineering behind a tube like this. We get it. The inside of the tube is crowded, so it is hard to identify the dynodes and other portions, but some diagrams make it readily apparent how the tube does its job.

We were impressed with how good the documentation that came with the tube looked, considering its age. We mean the condition it was in. The document itself was obviously a reproduction of a typewritten document with hand-drawn figures and graphs.

We were hoping for some footage of the tube in action, but we’ll have to wait for a future video. We are betting that is coming, though. Although there are some solid-state detectors, they are not suitable for all applications. There was a time, though, when the tubes were in many applications, including X-ray scanners and photography equipment.

Continue reading “Single Photon Detection With Photomultipliers”

Hackaday Podcast 192: Supercon Was Awesome, How To Grind ICs And Make Your Own Telescope

This week, Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi are still flying high on their post-Supercon buzz (and are a bit jet lagged) this week. We’ll start with some of the highlights from our long-awaited Pasadena meetup, and talk a bit about the winner of this year’s Hackaday Prize. Talk will then shift over to shaved down NES chips, radioactive Dungeons and Dragons gameplay, an impressive 3D printed telescope being developed by the community, and the end of the Slingbox. Stick around for a double dose of Dan Maloney, as we go over his twin treatises on dosimetry and the search for extraterrestrial life.

Download it, burn it on a floppy, and you’ll have it forever!

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 192: Supercon Was Awesome, How To Grind ICs And Make Your Own Telescope”

Hackaday Podcast 187: The Sound Of Gleeful Gerbils, The Song Of The Hard Drive, And A Lipstick Pickup Lullaby

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos gushed about NASA’s live obliteration of minor planet Dimorphos using a probe outfitted with a camera. Spoiler alert: the probe reaches its rock-dappled rocky target just fine, and the final transmitted image has a decidedly human tinge.

Kristina brought the mystery sound again this week, much to Elliot’s sonic delight. Did he get it? Did he figure it out? Well, no. The important thing is one of you is bound to get it.

We kick off the hacks with a really neat 3D printed linkage that acts as an elevator for a marble run, and then we discuss a mid-century hack that helps you decide whether it’s time to emerge from the fallout shelter using the contents of your typical 1950s pockets. We spent a few minutes comparing our recent radiation exposure levels  — Kristina wins with about a dozen x-rays so far this year, but no full-body CT scans. Then we talk guitars for a bit, remember a forgotten CPU from TI, and spend a few cycles talking about a tone-wheel organ that sounds like a chorus of gleeful gerbils.

Finally, we talk toner transfer for 3D prints, argue in defense of small teams versus large committees, and get all tangled up in cursive.

Direct download.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 187: The Sound Of Gleeful Gerbils, The Song Of The Hard Drive, And A Lipstick Pickup Lullaby”

A 7805 Regulator puts out 6.3 Volts

Simple Electronic Hacks Inspire Doing More With Less

It’s late at night. The solder smoke keeps getting in your tired eyes, but your project is nearly done. The main circuit is powered by your 13.8 V bench supply, but part of the circuit needs 9 V. You dig into your stash to find your last LM7809 voltage regulator, but all you have is a bunch of LM7805’s. Are you done for the night? Not if you’ve watched [0033mer]’s Simple Electronic Circuit Hacks video! You know just what to do. The ground pin of a LM7805 connects to the cathode of a TL431 programmable Zener diode pulled from an old scrapped TV. The diode is referenced to a voltage divider, and voila! Your LM7805 is now putting out a steady 9 V.

How did [0033mer] become adept at doing more with less? As he explains in the video below, his primary source of parts in The Time Before The Internet was old TV’s that were beyond repair. Using N-Channel MOSFETs to switch AC, sensing temperature changes with signal diodes, and even replacing a 555 with a blinking LED are just a few of the hacks covered in the video below the break.

We especially appreciated the simple, to-the-point presentation that inspires us to keep on hacking in the truest sense: Doing more with less! If you enjoy a good diode hack like we do, you will likely appreciate learning Diode Basics by W2AEW, or a Diode Based Radiation Detector.

Thank you [DSM] for the tip! Be sure to submit your the cool things you come across to our Tips Line!

Continue reading “Simple Electronic Hacks Inspire Doing More With Less”