Oculus Releases Open Source Hardware

Latency

Oculus VR, makers of the very cool Oculus Rift VR display, are making their first steps towards open hardware. Their first project is a latency tester, meant to precisely measure the latency of a VR setup or application. This is true open hardware with everything – the firmware, schematics, and mechanical parts all available on GitHub

Inside this neat bit of hardware is a STM32F102 microcontroller and a TCS3414 color sensor. The firmware is designed to measure changes in color and send that data back to a computer with a timestamp.

Not only are the schematics and board files available, there are also a few links to buy the PCBs at OSH Park: for about $24, you can get three copies of the main PCB and sensor board delivered to your door. If you have a 3D printer, Oculus has provided the .STL files to print out the enclosure for this device.

While this is a fairly niche product, we’re amazed at how well the Oculus folk have put together this open source hardware project. Everything you need to replicate this product, from board files, mechanical design, firmware, and instructions on how to build everything is just right there, sitting it a GitHub. Wonderful work.

Building A Cessna 172 Simulator

plane

As anyone who has downloaded Microsoft Flight Simulator X or X-Plane knows, piloting an aircraft using a keyboard and mouse just doesn’t work. If you’re going to get in to the world of flight simulators, it’s best to go all-in. [Stevenarango] knows this and built a great Cessna 172 cockpit for his personal use.

All the gauges, instrument panels, and controls are from Saitek, one of the best manufacturers of home/hobbyist flight controls. The instruments were mounted on a 5mm piece of PVC, which is mounted on a C172 cockpit-sized wooden frame. All the instruments, from the throttle, pedals, yoke, trim wheel, individual LCD steam gauges, and multi panel are driven by USB.

As for the actual simulation, [Steven] is using a fairly powerful computer running Flight Simulator X with dual monitors – one for the glass cockpit and another for the windscreen. It’s not quite the same scale as building a 737 in your garage, but it’s more than sufficient for an awesome flight simulator experience at home.

Free Falling Quadcopter Experiments End With Splat

Don’t get too attached to the great picture up above, as the quad shooting it was in a death plunge when the frame was snapped. There’s just something tempting about free fall. Nearly every tri/quad/hex/multicopter pilot has the impulse to chop the throttle while flying around. Most quadcopters are fixed pitch, which means that as power drops, so does control authority. When power is cut, they fall like stones. A quick throttle chop usually results in a few feet of lost altitude and a quickened pulse for the pilot. Cut power for much longer than that, and things can get really interesting.  [RcTestFlight] decided to study free fall in depth, and modified a test bed quadcopter just for this purpose.

First, a bit of a primer on free-falling quadcopters and their power systems.  Quadcopters always have two motors spinning clockwise, and two spinning counterclockwise. This configuration counters torque and allows for yaw control. Most large quads these days use sensorless brushless motors, which can be finicky about startup conditions. Brushless controllers are generally programmed to kick a motor into spinning in the proper direction. If a motor is spinning in reverse at several hundred RPM, things can get interesting. There will often be several seconds of stuttering before the motor starts up, if it starts at all. The controller MOSFETS can even be destroyed in cases like this.

When a quadcopter loses power, the motors slow down and thrust drops off. The quad begins to drop. As the falling quadcopter picks up speed, the propellers begin to spin (windmill) due to the air rushing up from below. If the quadcopter started its fall in a normal attitude, all four of  the propellers will rotate reverse of its normal direction.  The now spinning props will actually act as something of an air brake, slowing the fall of the quad. This is similar to a falling maple seed, or autorotation in a helicopter.  The spinning blades will also act as gyroscopes, which will add some level of stabilization to the falling quadcopter. Don’t get us wrong – the quadcopter can still be unstable as it falls, generally bobbing and weaving through the air. None of this is a guarantee that the quad won’t tip over onto its back – which will reverse the entire process.  Through all of this bobbing, weaving, and falling the flight controller has been along for the ride. Most flight controllers we’ve worked with have not been programmed with free fall in mind, so there is no guarantee that they will come back on-line when the throttle is rolled on. Thankfully many controllers are open source, so testing and changes are only a matter of risking your quadcopter.

Continue reading “Free Falling Quadcopter Experiments End With Splat”

The Beginning Of A DIY Vehicle Night Vision System

night vision car

[Stephen] has just shared with us the current progress of his night vision vehicle system, and it’s looking quite promising!

The idea of the project is to provide the driver with a high contrast image of the road, pedestrians and any other obstacles that may not be immediately visible with headlights. It’s actually becoming a feature on many luxury cars including BMW, Audi, GM and Honda. This is what inspired [Stephen] to try making his own.

The current system consists of an infrared camera, two powerful IR light spot lights, and a dashboard LCD screen to view it. It may be considered “not a hack” by some of our more exuberant readers, but [Stephen] does such a great job explaining his future plans for it, which include object recognition using OpenCV, so we felt it was more than worth a share, even at this point.

You see, the idea of vehicle night vision is not to constantly watch a little screen instead of the road — it’s designed to be there when you need it — and to let you know when you need it, [Stephen’s] planning on adding a Raspberry Pi to the mix running OpenCV to detect any anomalies on the road that could be of concern. We shudder at the amount of  training a system like that might need — well, depending on the complexity of this image recognition.

Anyway, stick around after the break to hear [Stephen] explain it himself — it is a long video, but if you want to skip to the action there are clips of it on the road at 1:53 and 26:52.

Continue reading “The Beginning Of A DIY Vehicle Night Vision System”

3D Printering: Making A Thing In FreeCAD, Part I

printering

I’ve been writing these tutorials on making an object in popular 3D modeling programs for a while now, and each week I’ve put out a call for what software I should do next. There is one constant in all those comment threads: FreeCAD. I don’t know if these suggestions reflect the popularity or difficulty of FreeCAD nevermind, it’s totally the difficulty.

FreeCAD is an amazing tool that, if used correctly, can be used to make just about any part, and do it in a manufacturing context. If you need a bauble that’s three times the size of the original, FreeCAD’s parametric modeling makes it easy to scale it up. If you’re designing a thumbscrew and want the head larger while keeping the threads the same, FreeCAD is for you. Basically, you can think of this as a graphical extension of the Thingiverse Customizer. Very powerful, very cool, and unlike a lot of CAD packages out there, free.

Our in-house, overpaid SEO expert (he’s really just a monkey someone trained to use a bullwhip) demands I link to the previous ‘Making a Thing’ tutorials:

The tutorial for FreeCAD continues below.

Continue reading “3D Printering: Making A Thing In FreeCAD, Part I”

Robot Dominates Air Hockey, Frightens John Connor, Wayne Gretzky

We’ve all been disappointed at some point in our lives after yearning to play air hockey and not finding anyone to play against. This is no longer a problem at [Jose]’s house. He has built a very amazing Air Hockey Playing Robot. This robot moves in 2 directions, can predict the movements of the puck and also decide to block, shoot or a do a combination of both.

Surprisingly, most of the ‘robotics’ parts are 3D printer left overs, which includes: NEMA17 stepper motors, an Arduino Mega, a RAMPS board, motor drivers, belts, bearings and rods. The bracketry, puck and paddle are all 3D printed. The air hockey table itself was built from scratch using off-the-shelf wood. Two standard 90mm PC fans are all that are responsible for creating the air pressure used to lift the puck. A PS3 camera monitors the action and is literally this robot’s eye in the sky.

Check out the video and learn more about this project after the break.

Continue reading “Robot Dominates Air Hockey, Frightens John Connor, Wayne Gretzky”

The 30th Anniversary Macintosh

It’s been just over thirty years since the original Macintosh was released, and [hudson] over at NYC Resistor thought it would be a good time to put some old hardware to use. He had found an all-in-one Mac SE “on the side of a road” a while ago (where exactly are these roads, we wonder), and the recent diamond anniversary for the original mac platform convinced him to do some major hardware hacking.

Inspired by a six-year-old project from a NYC Resistor founder aptly named the 24th anniversary Mac, [hudson] decided to replace the old hardware with more powerful components – in this case, a BeagleBone Black. Unlike the earlier build, though, the original CRT would be salvaged; the analog board on the Mac SE has pins for video, hsync, vsync, and power.

To get a picture on the old CRT, [hudson] needed to write a software video card that used the BeagleBone’s PRU. The CRT isn’t exactly “modern” tech, and everything must be clocked at exactly 60.1 Hz lest the CRT emit a terrible buzzing sound.

With a software video card written for the old CRT, the BeagleBone becomes the new brains of this beige box. It runs all the classic Linux GUI apps including XEyes and XScreenSaver, although flying toasters might be out of the question. He also managed to load up the Hackaday retro site with xterm, making this one of the best ways to make an old Mac SE useful.