Putting A Mac Plus On The Internet

plus

[Jeff] has a Mac Plus, an 8 MHz computer with 4 MB of RAM and a 512×342 1-bit screen. It was his first ‘real’ computer, and like those guys that take Model A Fords out for a Sunday drive, [Jeff] decided to put this old box on the Internet.

A Plus has a few options to get on the Internet. The best, but most expensive, is a SCSI to Ethernet computer. For a somewhat slower connections, a PowerPC mac can be used as an Ethernet to Localtalk (the Macintosh serial port networking protocol) bridge. Lacking either of those pieces of hardware, [Jeff] decided to use a Raspberry Pi. The Pi does the heavy lifting, and a handful of serial adapters and voltage converters turns the Pi into something that can talk to the Plus’ serial port.

Even with the MacTCP stack and the MacWeb browser, there are still some things this ancient computer couldn’t do. HTTPS hadn’t been invented until 1994, cookies are just a pain, and CSS is right out. This means modern websites (except, of course, the Hackaday retro edition) simply won’t render properly. To fix this issue, [Jeff]’s friend [Tyler] came up with a Python script using Requests, Beautiful Soup, and Flask to strip out all the Web 2.0 cruft, handle the cookies, and to get rid of SSL.

The end result is a Mac Plus with 4 Megabytes of RAM on the Internet, able to pull up Wikipedia and Hacker News. It isn’t fast by any means – in the video below, it takes about five minutes to pull up the front page of Hacker News – but it is a 27-year-old computer on the Internet.

Continue reading “Putting A Mac Plus On The Internet”

Fubarino Contest: VFD Clock

hackad

The entries for our Fubarino contest are slowly yet surely coming in. [James] already had an awesome VFD clock under his belt, and figured adding a Hackaday easter egg to his project would be simple enough.

[James’] clock is based on the TI Stellaris LaunchPad with six beautiful seven-segment VFD display tubes. The clock’s time is controlled by a DS1307 RTC chip, and a small switch-mode power supply controlled by the Stellaris boosts the power from 5 Volts to 50 Volts for the tubes. The tubes are controlled with a Max6921 VFD driver chip.

The easter egg for this project – displaying the Hackaday URL – is only shown when you power up the clock when the seconds display shows 37. That’s extremely subtle for an easter egg and just the way we like it.

All the code for [James]’ project is up on GitHub along with the designs for the tube clock’s enclosure. Really an awesome project, and a great way for [James] to earn himself a Fubarino.

What are you waiting for? We still haven’t passed twenty entries which means your chances of winning are pretty good!

Continue reading “Fubarino Contest: VFD Clock”

Over Engineered Kegerator Is Glorious

keger

When [Joey] decided to build a kegerator, he didn’t skimp. No commercial unit or simple kit would do. [Joey] wanted complete temperature monitoring, with a tap on the kegerator itself and a cooled tap remotely mounted at his bar. He started with a box freezer, which was a bit short for his purposes. Not a problem, as [Joey] cut an extended collar for the freezer from HDPE on his shopbot. The new collar gives mounting points for the beer lines, gas lines, as well as all the electronics.

Temperature control is handled by a commercial controller, however temperature monitoring is another thing altogether. An Arduino sits in a custom aluminum case on the outside of the kegerator. The Arduino reports temperature, beer type and also controls the cooling system for the beer lines. The cooling system alone is incredible. [Joey] designed everything in CAD and cut the parts out on his shopbot. Two fans sit in an aluminum air box. One fan is used to push cold air out from the freezer around the beer line. A second fan pulls air back in, keeping the kegerator/line/tap air system a (relatively) closed loop. The entire line set is insulated with 2″ fiberglass flex duct.

Temperature data and trend graphs can be monitored on the web, and [Joey] is using a Raspberry Pi to create a wall mounted status screen for his bar room. We love this build! [Joey] we’d buy you a beer, but it seems like you’ve got that covered already!

Status Light Tells You The Code Is Borked Again

status light

[Arthur] is teaching himself product development. Rather than create a few mock-up products, he’s taking the path of designing real devices he can use. His current device is a status light for automated software tests.  We’ve seen test and GitHub status lights before, however this is the first one to integrate with an outside web service. The status light’s state is based upon output from CodeShip, an online continuous deployment test engine.

The electronic design is simple. An Electric Imp retrieves test status data from CodeShip. The Imp then sends the status data over two GPIO lines to an AdaFruit Trinket. The Trinket controls a NeoPixel ring. A green ring indicates all tests are passing. Purple means tests are in progress. A spinning red ring (of death) means one or more tests have failed. Power is supplied via a mini USB connector.

[Arthur] spent quite a bit of time on the mechanical design of the status light as well. All the parts are 3D printed. This allowed him to quickly go through several revisions of each part. We like the use of white PLA for a frosted effect on the top section of the light, as it diffuses the eye piercing glow from all those RGB LEDs. As a finishing touch, [Arthur] created a fake product page for his light. He doesn’t have any plans to sell it, but we hope he drops the source and STL files so we can create one of our own.

Continue reading “Status Light Tells You The Code Is Borked Again”

Inverted Christmas Tree Made Of Nespresso Tubes

1468516_376724969131752_925434023_n

What happens when you put a few geeks in a room with a curtain rod, 240 Nespresso tubes, some planks, some tape, fairy lights, and a Raspberry Pi? Well, apparently this!

There’s not too much information on how they made it, but there is a pretty extensive gallery of photos. When we consider how much packaging we waste, it’s nice to see some being reused for a project, at least temporarily! The Nespresso tubes are pretty nice looking which certainly lends itself to this project, but our real question is who drank all the coffee…

The LED fairy lights are voice controlled using a Raspberry Pi model B, nothing too fancy, but a nice added affect. Check out the video after the break — the voice commands are in French though!

Continue reading “Inverted Christmas Tree Made Of Nespresso Tubes”

Real Life Sonic Screwdriver For Home Automation

sonic

Any Doctor Who fans out there? [Pat] just sent us his project on home automation… using a Sonic Screwdriver!

Ever since he pre-ordered his Raspberry Pi at the beginning of February 2012, he knew he wanted to try his hand at home automation. The easy way was to use X10 outlets, but at $20+ an outlet, it’s not that affordable. Instead, he managed to find a rather cheap system on Amazon — RF controlled outlets. They only cost about $35 for a 5-pack!

It’s a very basic system: five outlets with five buttons on the remote. All he had to do was wire up the Raspberry Pi to simulate the button presses by setting the GPIO pins high, and presto, a simple but effective home automation setup.

This is where it starts to get fun. Unfortunately, unlike a real Time Lord, [Pat] didn’t build his sonic from scratch. Instead, he found a universal remote control — styled after [Smith]’s sonic. Add another RF receiver to the Pi, a web-based interface to extend the range, and bam, you’ve got one geeky, but awesome, home automation setup.

Stick around after the break to see it in action!

Continue reading “Real Life Sonic Screwdriver For Home Automation”

HDD Driven Table Tennis Robot

12

Need to hone up your ping pong skills? Nobody to play with? That’s okay, you could always build a hard drive powered ping pong ball launcher!

[Vendel Miskei] must like 3D modeling. He’s drawn up his entire project in some kind of 3D CAD program (the textures look vaguely like Sketchup?).  It makes use of two HDDs, a computer power supply, a bunch of PVC pipe, a microwave synchronous motor, and an overhead light projector!

In order for the hard drives to grip the ping pong balls, it looks like [Vendel] removed all but one of the platters, then glued some foam to it, and what looks like the rubber from a table tennis paddle on top. He’s also made use of the original hard drive case by cutting the end off to expose half of the platter. It seems to be pretty effective!

The overhead light projector is actually just used as a convenient weighted stand for the entire project. The recycled microwave motor indexes the balls in a bucket, allowing for a huge number of balls to be queued up! Stick around after the break to see some of the awesome 3D renderings of the project, and the actual table tennis robot playing a game with its master!

Continue reading “HDD Driven Table Tennis Robot”