Tearing Apart An Organ And Making A MIDI Keyboard

pedul

What do you do if you’re in a band and have an old, dead organ lying around? Build a MIDI foot controller, of course.

After dispensing of the old organ guts, [Mark] mounted the pedals in a handsome road case and started working on the electronics. His first inclination was to mount an Arduino Pro Mini on a piece of stripboard, but after that failed decided to learn Eagle and fabricate a PCB. each key of the organ pedals are connected to a switch read by the Arduino which sends data to a Korg Microsampler over MIDI.

The swell pedal from the organ was also reused, but because the old incandescent light in the pedal was toast, this was replaced with an LED. It still works, allowing [Mark] to do volume swells on his new, fancy, MIDI foot controller.

You can check out a video of the controller below.

Continue reading “Tearing Apart An Organ And Making A MIDI Keyboard”

LED Tie Plays Tetris

tetris

[Bill] has been working with a gaggle of 8th graders this summer at a STEM camp, impressing them with his geeky attire such as an 8-bit and PCB ties, and an LED illuminated lab coat. The adolescent tinkerers asked him what he would be wearing on the last day. Not wanting to let the kids down, he whipped up an LED Tetris tie in an evening.

The Tetris board is a 20 x 4 grid of WS2811 based RGB LED strips, controlled by a Digispark dev board. Structurally, the tie is just two bits of card stock with the electronic bits sandwiched in between. and taped to a cheap clip-on. In the video below, the tie doesn’t have any sort of input to control the movement and rotation of blocks. [Bill] plans to update his tie with some rudimentary AI so it can play itself.

All the code is over on [Bill]’s git. It’s still a work in progress, but from the STEM student’s reaction, there’s a lot of potential in this tie.

Continue reading “LED Tie Plays Tetris”

Solder Trick To Make Your Own Surface Mount Breakout Boards

surface-mount-breakout-trick

We think you’re really going to enjoy this trick for making surface mount breakout boards. It’s common to use magnet wire to connect individual pins of a surface mount part to breadboard friendly protoboard with pin headers. What’s new here (at least to us) is that [Raul] solders one wire to both pins directly across from one another.

The image at the left shows an eight pin part with four wires soldered in place. To get to this point he first taped the wires down to a work surface being careful to space them to match the pitch on the chip’s leads. He then tapes the chip in place and solders all of the legs to the wires. This seems to kill two birds with one stone as aligning one wire to one leg is tough. From there he flips the chip over and cuts the wire spanning under it. This leaves an easy job of soldering the trailing side of the wire to a hunk of protoboard.

It’s perfect for chips with a small number of pins. Of course you may still want an etched breakout board for something with a ton of leads.

Signmaking In Glass And Gold

Signmaking today isn’t what it once was. Where today a few vinyl letters stuck to a piece of plate glass is good enough for any storefront, there was a time when the signs in front of businesses were works of art involving many skills and dozens of tradesmen to create. [David Smith] is one of the last remaining old-school signmakers, and his creations are just as beautiful as the finely crafted signs of a century ago.

The techniques [David] uses to create his signs are as varied as the finished products are elegant. He cuts patterned grooves into glass with wheels made of diamond or ceramic and bends shaped glass over forms in a very large kiln.

Aside from cutting, shaping, and grinding glass, [David] also paints his signs – on the back side in reverse, building up his design layer by layer. The very first layer in some of his designs are gold leaf, a difficult material but [David] invented his own leaf applicator that makes the job much easier.

Truly amazing works of art, and certainly much more elegant than whatever plastic nonsense goes as proper signmaking these days.

Continue reading “Signmaking In Glass And Gold”

Build A Waterproof Music Controller On The Cheap

shower-controller-for-music-playback

[Aaron] wrote in to show off the waterproof music controller (translated) he just finished building. He uses it in the shower — which makes us wonder how long he’s spending in there. We could also see it being useful by the pool, on the beach, or anywhere else that you need a cheap and easy control system.

His computer plays tunes while he’s getting ready for the day. This means he was able to use an inexpensive wireless keyboard for control. The donor keyboard has dedicated music control keys which he carefully traced to the PCB before removing the flexible sheets that detect key presses. Next he found a water tight food container and sized his protoboard to fit. You can see his button layout above. Holes were cut in the lid of the container, with a plastic membrane glued on the underside. This will keep the water out while still allowing him to actuate the momentary push switches.

Most mobile devices will work with wireless keyboards. If your car is nearby just hook your phone to the stereo and control it with this rather than building a dedicated beach stereo system.

How To Build A Tron Bar That Daft Punk Would Hang Out At

tron-bar-daft-punk

Sure, the bar in this image looks pretty neat. But the video showing off its synchronization with the music brings it to the next level. The flashing lights and EL wire put on a quite a show that may make the bartenders feel like they’ve already had a few too many.

The most amusing part of the project is that it all started from that half bookcase mounted on the wall. [Alexander Givens] and his roommate decided to augment its usefulness as a liquor cabinet by building a bar around it. But why stop there? LED Strips and 120 feet of elecroluminescent wire give the bar its inner glow. The illuminated lines are obvious, but the LED strip locations may not be. Several of them light the shelves hosting liquor and glass wear. The bartop itself is made of glass, filled with 75 pounds of marbles, and lit from underneath by the rest of the strips.

An Arduino Mega with an EL shield drives the system. The guys built a rudimentary control interface that looks partially spill tolerant. It’s located just under the inside lip of the bar.

Their costumes came out pretty well too. But with a built-in centerpiece like this they may want to upgrade to a more accurate replica.

Continue reading “How To Build A Tron Bar That Daft Punk Would Hang Out At”

TI’s CC3000 WiFi Chip Gets A Library

About six months ago, Texas Instruments released a simple, cheap, single-chip WiFi module. At $10 a piece in quantities of 1000, the CC3000 is a much better solution to the problem of an ‘Internet of Things’ than a $50 Arduino Ethernet modules, or even the $30 Electric Imp. All indications, especially the frequent out of stock status for the dev board on TI’s web site, show the CC3000 will be a popular chip, but until now we haven’t seen a CC3000 library for the Arduino or other microcontrollers.

[Chris] just solved that problem for us with a CC3000 WiFi library for the Arduino. He ported TI’s MSP430 CC3000 library to the Arduino, allowing even the bare-bones Arduino Uno to connect to a WiFi network with just a handful of parts. The code itself takes about 12k of Flash and 350 bytes of RAM, giving anyone using the CC3000 enough room left over to do some really interesting stuff. There’s even a slimmed down library that uses somewhere between 2k and 6k of Flash, making an ATtiny-powered web server a reality.

There are a few caveats in using the CC3000 with an Arduino; it’s a 3.3 Volt part, so you’ll need a level shifter or some resistors. Also, the chip draws about 250 mA when it’s being used, so you’ll need a beefy battery if you want your project to last an entire day of use.

Now that the library is out of the way, be on the lookout for a CC3000 breakout board. Here’s one, but expect some more on the market soon.