New Wearable Detects Imminent Vocal Fatigue

“The show must go on,” so they say. These days, whether you’re an opera singer, a teacher, or just someone with a lot of video meetings, you rely on your voice to work. But what if your voice is under threat? Work it too hard, or for too long, and you might find that it suddenly lets you down.

Researchers from Northwestern University have developed a new technology to protect against this happenstance. It’s the first wearable device that monitors vocal usage and calls for time out before damage occurs. The research has been published in the Proceedings of the National Academy of Sciences.

Continue reading “New Wearable Detects Imminent Vocal Fatigue”

The FPGA board in question which was programmed to run the algorithm. (Source: iranintl)

Iran’s Military Quantum Claim: It’s Only 99.4% Ridiculous

When Iran recently announced a quantum processing algorithm (Google translation) that would help its military to detect water surface disturbances, the instant response from Western media was one of ridicule, based on the displayed hardware. The hardware in question was the Digilent ZedBoard Zynq-7000 hybrid SoC/FPGA development board, which can be yours for less than $600.

Seems absurd, and the claim about any realistic military use absolutely is. But buried deep, deep down, there may be a tiny kernel of truth: because quantum computers are inherently parallel, FPGAs can make a good fit for small-scale quantum simulations.

Does this mean that the Iranian Navy would be better off simulating quantum circuits on an FPGA board than on a GPU or even a used laptop? Probably not. Will this hardware serve the proposed military application in the forseeable future? Absolutely not! Was this a misleading and ridiculous photo op? Yup. 100%.

But is emulating qubits in FPGA fabric a real thing? Turns out it is! Let’s have a look.

Continue reading “Iran’s Military Quantum Claim: It’s Only 99.4% Ridiculous”

The Simplest Social Engineering Hack Of Them All

Here at Hackaday we cover news and interesting features for the hacker community, with an emphasis more on the hardware side. Nevertheless we also cover stories from time to time from the broader world of security. These usually involve vulnerabilities discovered through the patient work of software or hardware researchers, and are certainly what we’d call hacking. But what about those information security breaches that aren’t hacks like that at all? What happens when the person being breached simply gives you the information?

I’ve got one, and while it’s Not A Hack, it’s definitely something that we and those outside our community need to talk about. I’m talking about the depressingly common occurrence of organisations who should know better, gifting their letterhead to all and sundry in the form of freely editable Word documents. Continue reading “The Simplest Social Engineering Hack Of Them All”

Raspberry Pi Pico W Now Supports Bluetooth

What’s the best kind of upgrade a piece of consumer technology can get? A free one that doesn’t require you to do anything other than accept a new version of the software it’s running.

That’s precisely what every current (and future) owner of the Raspberry Pi Pico W just got with the addition of Bluetooth support to SDK 1.5.1. This is possible because the CYW43439 radio chipset used on the wireless version of the Pi Pico has always had Bluetooth capabilities, they just weren’t officially accessible from the C or MicroPython environments until now. In a corresponding blog post, [Eben Upton] explains that part of the delay was due to difficulties in getting both WiFi and Bluetooth connections to work simultaneously over the three-pin SPI bus that links the two chips on the board.

One thing that struck us as particularly interesting here is the use of BlueKitchen’s BTStack to provide support for both Bluetooth Classic and Low Energy profiles. This library is released under a modified version of the BSD 3-Clause license that otherwise specifically forbids commercial usage. That would be a problem for anyone who wanted to sell a gadget built around the Pico W, so Raspberry Pi Ltd negotiated — and presumably paid for — a special dispensation so commercial use is in the clear.

We should note that technically Bluetooth support was available in a beta state previously, albeit without this new license agreement made with BlueKitchen. Though anyone with a keen eye knew Bluetooth support was coming well before that, our own [Elliot Williams] called it when he first set eyes on the Pi Pico W back in 2022.

Clay Makes For DIY Power Source, Just Add Water

[Robert Murray] starts out showing us some clay formations that house bees. He couldn’t take any of that clay home, but that’s no problem — clay is plentiful, and apparently, you can make a battery with it. Well, perhaps not really a battery. Adding water to zeolite — a clay often used as a filter material — generates heat, and where there’s heat, there can be electricity.

[Robert] uses a salvaged Peltier device, as you find in small electric refrigerators. These solid-state heat pumps usually convert electricity into a temperature differential, but in this case, it is used as a thermocouple, generating electricity from a temperature difference.

The clay used is a very fine aluminosilicate crystal known as zeolite 13X. Once it comes into contact with plain ordinary water, it immediately starts to boil. It’s a neat experiment, and with the Peltier underneath the metal container holding the clay, enough power is produced to spin a small motor. Of course this won’t power anything large, but on the other hand, plenty of things these days don’t take much power. This technique would work with any exothermic reaction of course, but there’s something compelling about the shelf-stability of water and clay.

Beats a potato, we suppose. Batteries don’t have to be difficult to make. It is only hard to make really good ones.

Continue reading “Clay Makes For DIY Power Source, Just Add Water”

Ham Almost Cooks ‘Dog

For those of us licensed in other countries it comes as something of a surprise to find that American radio amateurs now have to run RF exposure calculations as part of their licence requirements. [Ham Radio Crash Course] as approached this in a unique fashion, by running around 800 watts of 6-metre power into a vertical antenna festooned with hotdogs. That’s right, this ham is trying to cook some ‘dawgs! Is his station producing dangerous levels of power that might cook passers-by?

Of course, aside from a barely-warmed line along where the ‘dogs were attached to the antenna there’s no heating to be found. But we think he’s trying to make the point in the video below the break about the relative pointlessness of applying RF field limits which are definitely relevant at much higher frequencies, to hams at low frequencies.

It leaves us curious as to how that 800 watts could be efficiently transferred into the sausages and really cook them. Strapping them to a vertical is we think the equivalent of strapping anything resistive to a conductor, they do not form a significant  enough part of the circuit. We think that even six metres could cook a sausage if it could be efficiently coupled into it, so we’d suggest putting a grounded sausage up the middle of a close-wound helix.

If you have any thoughts on the RF exposure calculations, or on the best way to cook a ‘dog with 6m, we’d love to hear the, in the comments. Meanwhile, this isn’t the first piece of ‘dog-based shenanigans we’ve brought you.

Continue reading “Ham Almost Cooks ‘Dog”

Diagram of the Sun. (Credit: Kelvinsong)

Parker Solar Probe’s Confirmation Of Interchange Reconnection Being The Source Of Fast Solar Wind

Although experimental verification is at the heart of the scientific method, there is quite a difficulty range when it comes to setting up such an experiment. Testing what underlies the formation of the fast solar winds that are ejected from coronal holes in the Sun’s corona is one of these tricky experimental setups. Yet it would seem that we now have our answer, with a newly published paper in Nature by S. D. Bale and colleagues detailing what we learned courtesy of the Parker Solar Probe (PSP), which has been on its way to the Sun since it was launched in August of 2018 from Earth.

Artist rendition of the Parker Solar Probe. (Credit: NASA)
Artist rendition of the Parker Solar Probe. (Credit: NASA)

The Sun’s solar wind is the name for a stream of charged particles which are ejected from the Sun’s corona, with generally two types being distinguished: slow and fast solar winds. The former type appears to originate from the Sun’s equatorial belt and gently saunters away from the Sun at a mere 300 – 500 km/s with a balmy temperature of 100 MK.

The fast solar wind originates from coronal holes, which are temporary regions of cooler, less dense plasma within the corona. These coronal holes are notable for being regions where the Sun’s magnetic field extends into interplanetary space as an open field, along which the charged particles of the corona can escape the Sun’s gravitational field.

These properties of coronal holes allow the resulting stream to travel at speeds around 750 km/s and a blistering 800 MK. What was unclear up till this point was exactly what powers the acceleration of the plasma. It was postulated that the source could be wave heating, as well as interchange reconnection, but with the PSP now close enough to perform the relevant measurements, the evidence points to the latter.

Essentially, interchange reconnection is the reestablishing of a coronal hole’s field lines after interaction with convection cells on the Sun’s photosphere. These convection cells draw the magnetic field into a kind of funnel after which the field lines reestablish themselves, which results in the ejection of hotter plasma than with the slow solar wind. Courtesy of the PSP’s measurements, measured fast solar winds could be matched with coronal holes, along with the magnetic fields. This gives us the clearest picture yet of how this phenomenon works, and how we might be able to predict it.

(Heading image: Diagram of the Sun. (Credit: Kelvinsong) )