Head To Print Head: CNC Vs FDM

It’s a question new makers often ask: “Should I start with a CNC machine or a 3D Printer?”– or, once you have both, every project gets the question “Should I use my CNC or 3D printer?” — and the answer is to both is, of course, “it depends”. In the video embedded below by [NeedItMakeIt] you can see a head-to-head comparison for one specific product he makes, CRATER, a magnetic, click-together stacking tray for tabletop gaming. (He says tabletop gaming, but we think these would be very handy in the shop, too.)

[NeedItMakeIt] takes us through the process for both FDM 3D Printing in PLA, and CNC Machining the same part in walnut. Which part is nicer is absolutely a matter of taste; we can’t imagine many wouldn’t chose the wood, but de gustibus non disputandum est–there is no accounting for taste. What there is accounting for is the materials and energy costs, which are both surprising– that walnut is cheaper than PLA for this part is actually shocking, but the amount of power needed for dust collection is something that caught us off guard, too.

Of course the process is the real key, and given that most of the video follows [NeedItMakeIt] crafting the CNC’d version of his invention, the video gives a good rundown to any newbie just how much more work is involved in getting a machined part ready for sale compared to “take it off the printer and glue in the magnets.” (It’s about 40 extra minutes, if you want to skip to the answer.) As you might expect, labour is by far the greatest cost in producing these items if you value your time, which [NeedItMakeIt] does in the spreadsheet he presents at the end.

What he does not do is provide an answer, because in the case of this part, neither CNC or 3D Printing is “better”. It’s a matter of taste– which is the great thing about DIY. We can decide for ourselves which process and which end product we prefer. “There is no accounting for taste”, de gustibus non disputandum est, is true enough that it’s been repeated since Latin was a thing. Which would you rather, in this case? CNC or 3D print? Perhaps you would rather 3D Print a CNC? Or have one machine to do it all? Let us know in the comments for that sweet, sweet engagement.

While you’re engaging, maybe drop us a tip, while we offer our thanks to [Al] for this one.

Continue reading “Head To Print Head: CNC Vs FDM”

3D Print Glass, Using Accessible Techniques

When seeing a story from MIT’s Lincoln Labs that promises 3D printing glass, our first reaction was that it might use some rare or novel chemicals, and certainly a super-high-tech printer. Perhaps it was some form of high-temperature laser sintering, unlikely to be within the reach of mere mortals. How wrong we were, because these boffins have developed a way to 3D print a glass-like material using easy-to-source materials and commonly available equipment.

The print medium is sodium silicate solution, commonly known as waterglass, mixed with silica and other inorganic nanoparticles. It’s referred to as an ink, and it appears to be printed using a technique very similar to the FDM printers we all know. The real magic comes in the curing process, though, because instead of being fired in a special furnace, these models are heated to 200 Celsius in an oil bath. They can then be solvent cleaned and are ready for use. The result may not be the fine crystal glass you may be expecting, but we can certainly see plenty of uses for it should it be turned into a commercial product. Certainly more convenient than sintering with a laser cutter.

Drone Photogrammetry

Photogrammetry Takes To The Skies

Maybe your goal is to preserve the heyday of rail travel with a precise scale replica of a particular railroad station. Maybe you’re making a hyper-local edition of Monopoly in which the houses and hotels are the actual houses and hotels in your hometown.

Whatever the reason, if you have need for shrinkifying a building or other reasonably large object, there is (at least) one sure-fire way to do it, and [ nastideplasy ] is your guide with this tutorial on drone photogrammetry.

The process is essentially the same as any other photogrammetry you may have seen before—take lots of overlapping photos of an object from many different angles around it, stitch those photos together, make a 3D mesh by triangulating corresponding points from multiple photos—but this time the photos are captured by drone, allowing for much larger subjects, so long as you can safely and legally fly a drone around it.

The challenge, of course, is capturing a sufficient number of overlapping photos such that your reconstruction software can process them into a clean 3D mesh. Where purpose-built 3D scanners, automatic turntables, or a steady hand and lots of patience worked well at a smaller scale, skill with a pair of control sticks is the key to getting a good scan of a house.

[ nastideplasy ] also points out the importance of lighting. Direct sunlight and deep shadows can cause issues when processing the images, and doing this at night is almost certainly out of the question. Overcast days are your best bet for a clean scan.

The tutorial calls for software from Autodesk to stitch photos and clean up 3D meshes. We’ve also seen some excellent results with open source options like Meshroom as well.

PVA Filament: Not Always What It Seems

PVA filament with a core. (Credit: Lost In Tech)
PVA filament with a core. (Credit: Lost In Tech)

PVA filament is an interesting filament type, for the reason that while it can be printed with any FDM printer, it supposedly readily dissolves in water, which is also the reason why PVA glue sticks are so popular when doing crafts and arts with young children. This property would make PVA filament ideal for printing supports if your printer can handle two different materials at the same time. So surely you can just pick any old PVA filament spool and get to printing, right? As [Lost in Tech] found out, this is not quite the case.

As an aside, watching PVA supports dissolve in water set to classical music (Bach’s Air from Orchestral Suite No. 3) is quite a pleasant vibe. After thus watching the various PVA prints dissolve for a while, we are left to analyze the results. The first interesting finding was that not every PVA filament dissolved the same way, or even fully.

The first gotcha is that PVA can stand for polyvinyl acetate (the glue stick) or polyvinyl alcohol (a thickener and stabilizer) , with the ‘PVA’ filament datasheets for each respective filament showing various combinations of both types of PVA. This results in wildly different properties per filament, both in terms of Shore hardness, their printability, as well as their ability to dissolve in water. Some of the filament types (Yousu, Reprapper) also have an outer layer and inner core for some reason.

Ultimately the message appears to be that ‘PVA’ filament requires a fair bit of research to have any chance of having a relatively trouble-free printing experience.

Continue reading “PVA Filament: Not Always What It Seems”

Build Your Own Telescope The Modern Way

When we were kids, it was a rite of passage to read the newly arrived Edmund catalog and dream of building our own telescope. One of our friends lived near a University, and they even had a summer program that would help you measure your mirrors and ensure you had a successful build. But most of us never ground mirrors from glass blanks and did all the other arcane steps required to make a working telescope. However, [La3emedimension] wants to tempt us again with a 3D-printable telescope kit.

Before you fire up the 3D printer, be aware that PLA is not recommended, and, of course, you are going to need some extra parts. There is supposed to be a README with a bill of parts, but we didn’t see it. However, there is a support page in French and a Discord server, so we have no doubt it can be found.

Continue reading “Build Your Own Telescope The Modern Way”

A Prunt 3D printer control board is shown mounted in a 3D printer, just behind a power supply, in the center of the image.

Keeping Snap And Crackle Under Control With Prunt Printer Firmware

For quite some time now, Marlin has been the firmware of choice for any kind of custom 3D printer, with only Klipper offering some serious competition in the open-source world. [Liam Powell] aims to introduce some more variety with the development of Prunt, a 3D printer control board and firmware stack.

Smooth motion control is Prunt’s biggest advantage: Klipper and Marlin use trapezoidal (three-phase) motion profiles, which aim for acceleration changes with physically impossible rapidity, leading to vibrations and ringing on prints. By contrast, Prunt uses a more physically realistic 31-phase motion profile. This lets the user independently adjust velocity, acceleration, jerk, snap, and crackle (the increasingly higher-order derivatives of position with respect to time) to reduce vibration and create smoother prints. To avoid sharp accelerations, Prunt can also turn corners into 15-degree Bézier curves.

The focus on smooth motion isn’t just a software feature; the Prunt control board uses hardware timers to control step generation, rather than the CPU. This avoids the timing issues which Klipper sometimes faces, and avoids slowing other parts of the program down. The board also seems to have a particular focus on avoiding electrical damage. It can detect short circuits in the heaters, thermistors, fans, and endstops, and can cut power and give the user a warning when one occurs. If the board somehow experiences a serious electrical fault, the USB port is isolated to prevent damage to the host computer. The firmware’s source is available on GitHub.

If you’re more interested in well-established programs, we’ve given a quick introduction to Klipper in the past. We’ve also seen people develop their own firmware for the Bambu Lab X1.

Expanding rack structure

Expanding Racks In The Spirit Of The Hoberman Sphere

If you’re a mechanical engineering wonk, you might appreciate this latest video from [Henry Segerman] wherein he demonstrates his various expanding racks.

[Henry] explains how the basic “double-rack” unit can be combined to make more complex structures. These structures are similar in spirit to the Hoberman sphere, which is a compact structure that can be expanded to fill a large space.

Continue reading “Expanding Racks In The Spirit Of The Hoberman Sphere”