The Filament Pelletizer For Fused Granular Fabrication

The ABS and PLA that goes into your 3D printer is sold in two forms. The first, naturally, is filament. The second is plastic granules, the raw material for your filament, and costs an order of magnitude less than the filament itself. For years we’ve been seeing machines that either print directly with plastic granules or are converted into filament with fancy filament-extruding machines. Now we can do it the other way. [Aubrey Woern] and [Joshua Pearce] of Michigan Tech have been working on a polymer pelletizer chopper that takes plastic filament and turns it into pellets.

The system uses a large corded drill motor to drive a Forstner drill bit. Filament is then threaded into the top of this spinning drill bit with the help of a small DC motor and grippy wheel printed out of Ninjaflex. The system works, and the authors of the paper were able to vary the size of the chopped filament by feeding it into the Forstner bit faster or slower.

While turning an expensive product (filament) back into its raw material (pellets) may not seem like a great idea, there have been a significant number of advancements in the state of manufacturing filament on a desktop and printing directly from pellets in recent years. A machine that turns plastic back into its raw state is something that’s needed if you want to experiment with plastic recycling, and this machine is more than capable of chopping up a spool of filament in two hours or so.

Etch-a-Sketch 3D Printed With Cell Phone

Most of us have fond memories of the Etch-a-Sketch from childhood. [Potent Printables] wanted to update the designs so he 3D printed an XY carriage for a stylus that works with a cell phone drawing program. You can see the video below and the 3D model details on Thingiverse.

The design is fun all by itself, but it also gave us a few ideas. For one thing, if you motorized it you could make some pretty clever drawing toys. But there could be a more practical use, too.

Continue reading “Etch-a-Sketch 3D Printed With Cell Phone”

FPV Antenna Leans Into The Bank

If you’re doing remote controlled flight, odds are you’re also flying FPV. Or you at least have a camera on board. If you’re transmitting to the ground, you may have noticed the antenna on your plane has some weird radiation patterns; bank your plane to the left or right, and your signal gets worse. [Ant0003] over on Thingiverse has a great solution to this problem that’s small, lightweight, and will fit into just about any airframe.

[Ant]’s flying a Mini Talon with FPV, and since planes turn slower than drones, and can fly much further than multicopters, the radiation pattern of the antenna is very important. In this case, [Ant] wants to keep the antenna perpendicular to the ground. This problem was solved with a cheap 9-gram servo and a few 3D printed parts that hold an SMA connector. One end of this wire goes to the video transmitter, and the antenna is screwed into the other end.

A servo alone does not make the antenna point straight up. To do this, [Ant] needed to program his flight controller. He’s using iNav, and a few clicks of the mouse makes one servo channel do whatever the gyroscope isn’t doing. The results (video below) speak for themselves. It’s an antenna that always points straight up, which is exactly what this video transmitter needed.

Continue reading “FPV Antenna Leans Into The Bank”

3D Printed Brushed Motor Is Easy To Visualize

A motor — or a generator — requires some normal magnets and some electromagnets. The usual arrangement is to have a brushed commutator that both powers the electromagnets and switches their polarity as the motor spins. Permanent magnets don’t rotate and attract or repel the electromagnets as they swing by. That can be a little hard to visualize, but if you 3D Print [Miller’s Planet’s] working model — or just watch the video below — you can see how it all works.

We imagine the hardest part of this is winding the large electromagnets. Getting the axle — a nail — centered is hard too, but from the video, it looks like it isn’t that critical. There was a problem with the link to the 3D model files, but it looks like this one works.

Continue reading “3D Printed Brushed Motor Is Easy To Visualize”

Germinate Seeds With The Help Of 3D Printing

Microgreens, also known as vegetable confetti, are all the rage in fancy restaurants around the globe. Raised from a variety of different vegetable seeds, they’re harvested just past the sprout period, but before they would qualify as baby greens – usually 10-14 days after planting. There’s a variety of ways to grow microgreens, and [Mr Ben] has developed a 3D printed rig to help.

The rig consists of two parts – a seed tray and a water tray underneath. The seed tray consists of a grid to house the broccoli seeds to be grown, with small holes in each grid pocket to allow drainage. They’re sized just under the minimum seed size to avoid the seeds falling through, and also provide a path for root growth. Beneath the seed tray, the water tray provides the required hydration for plant growth, and helps train the roots downward.

[Mr Ben] notes there are some possible improvements to the design. He suggests PETG would be the ideal filament to use for the prints, as it is foodsafe unlike PLA and ABS. Additionally, precautions could be taken to better seal the water tray to avoid it becoming a breeding ground for insects.

Overall, it’s a tidy project that makes growing these otherwise delicate and expensive greens much neater and tidier. There’s also plenty of scope out there to automate plant care, too. Video after the break.

Continue reading “Germinate Seeds With The Help Of 3D Printing”

Soft Silicone Pneumatics Are 3D-printed In A Tub Of Gel

We’ve seen our fair share of soft silicone robots around here. Typically they are produced through a casting process, where molds are printed and then filled with liquid silicone to form the robot parts. These parts are subsequently removed from the molds and made to wiggle, grip, and swim through the use of pneumatic or hydraulic pumps and valves. MIT’s Self-Assembly Lab has found a way to print the parts directly instead, by extruding silicone, layer by layer, into a gel-filled tank.

The Self-Assembly Lab’s site is unfortunately light on details, but there is a related academic paper (behind a paywall, alas) that documents the process. From the abstract, it seems the printing process is intended for more general purpose printing needs, and is able to print any “photo or chemically cured” material, including two-part mixtures. Additionally, because of the gel-filled tank, the material need not be deposited in flat layers like a traditional 3D-printer. More interesting shapes and material properties could be created by using the full 3d-volume to do 3D extrusion paths.

To see some of the creative shapes and mechanisms developed by MIT using this process, check out the two aesthetically pleasing videos of pulsating soft white silicone shapes after the break.

Continue reading “Soft Silicone Pneumatics Are 3D-printed In A Tub Of Gel”

Tiny Drone Racing Gates Use Up Those Filament Scraps

Drone racing comes in different shapes and sizes, and some multirotor racers can be very small indeed. Racing means having gates to fly though, and here’s a clever DIY design by [Qgel] that uses a small 3D printed part and a segment of printer filament as the components for small-scale drone racing gates.

The base is 3D printed as a single piece and is not fussy about tolerances, meanwhile the gate itself is formed from a segment of printer filament. Size is easily adjusted, they disassemble readily, are cheap to produce, and take up very little space. In short, perfect for its intended purpose.

Races benefit from being able to measure lap time, and that led to DIY drone racing transponders, complete with a desktop client for managing the data. Not all flying is about racing, but pilots with racing skills were key to getting results in this Star Wars fan film that used drones. Finally, those who still feel that using the word “drone” to include even palm-sized racers is too broad of a use may be interested in [Brian Benchoff]’s research into the surprisingly long history of the word “drone” and its historically broad definition.