RC rover/car with red and yellow-sided wheels. Electronics are visible on top of vehicle.

An RC Car Driven With Old 3D Printer Motors

With the newer generation of quick and reliable 3D printers, we find ourselves with the old collecting dust and cobwebs. You might pull it out for an emergency print, that is if it still works… In the scenario of an eternally resting printer (or ones not worth reviving), trying to give new life to the functional parts is a great idea. This is exactly what [MarkMakies] did with a simple RC rover design from an old Makerbot Replicator clone. 

Using a stepper motor to directly drive each wheel, this rover proves its ability to handle a variety of terrain types. Stepper motors are far from the most common way to drive an RC vehicle, but they can certainly give enough power. Controlling these motors is done from a custom protoboard, allowing the use of RC control. Securing all these parts together only requires a couple of 3D printed parts and the rods used to print them. Throw in a drill battery for power, and you can take it nearly anywhere! 

Continue reading “An RC Car Driven With Old 3D Printer Motors”

Threaded Insert Press Is 100% 3D Printed

Sometimes, when making a 3D printed object, plastic just isn’t enough. Probably the most common addition to our prints is the ubiquitous brass threaded inset, which has proven its worth time and again over the years in providing a secure screw attachment point with less hassle than a captive nut. Of course to insert these bits of machined brass, you need to press them in, and unless you’ve got a very good hand with a soldering iron it’s usually a good idea to use a press of some sort. [TimNummy]  shows us that, ironically enough, making such a press is perfectly doable using only printed parts. Well, save for the soldering iron, of course.

He calls it the Superserter. Not only is it 100% printed plastic, but the entire design fits on a single 256 mm by 256 mm bed. In his case it was done on the Bambulab X1C, but it’s a common enough print bed size and can be printed without any supports. It’s even sized to fit the popular Gridfinity standard for a neat and tidy desk and handy bin placement for the inserts.

[TimNummy] clearly spent some time thinking about design for 3D printed manufacturing in order to create an assembly that does not need linear rails, sliders, or bearings as other press projects often do. The ironic thing is that if that same amount of effort went into other designs, it might eliminate the need for threaded inserts entirely.

If you haven’t delved into the world of threaded inserts, we put up a how-to-guide a few years ago. If you’re wondering if you can get away with just printing threads, the answer is “maybe”– we highlighted a video comparing printed threads with different inserts a while back to get you started thinking about the design limitations there.

Continue reading “Threaded Insert Press Is 100% 3D Printed”

Turning Up The Heat On HT-PLA’s Marketing

PLA is probably the most-printed filament on the market these days, and is there any wonder? It’s cheap, it’s easy, and it doesn’t poison you (as quickly as its competitors, anyway). What it doesn’t do very well is take the heat. Polymaker’s new HT-PLA formulation promises to solve that, and [My Tech Fun] put those claims to the test in a recent video.

Polymaker claims its HT-PLA is heat-stable up-to 150 C, but still prints as easily as standard PLA at up to 300 mm/s. By “heat stable” they mean able to maintain dimensions and form at that temperature when not under any load, save perhaps its own weight. If you need high-temp mechanical properties, they also offer a glass-fiber infused HT-PLA-GF that they claim is heat resistant up to 110 C (that is, able to withstand load at that temperature) which is hard to sneeze at, considering you  you could print it on a stock Ender so long as you tossed a hardened nozzle on it.

Now it’s not a free lunch: to get the very best results, you do need to anneal the parts, which can introduce shrinkage and warping in HT-PLA, but that’s where HT-PLA-GF shines. If you want to see the results of the tests you can jump to 19:27 in the video, but the short version is that this is mechanically like PLA and can take the heat.

The verdict? If you like printing PLA and want to shove something in a hot car, you might want to try HT-PLA. Otherwise, it’s just like PLA. It prints like PLA, it looks like PLA, and when cold it behaves mechanically like PLA, which we suppose was rather what Polymaker was going for. There is no word yet on whether the additives that make it high-temp increase off-gassing or toxicity but since this stuff prints like PLA and can stand a little airflow, it should be easy to ventilate, which might make for fewer trade-offs when building an enclosure.

What do you think, will you be trying HT-PLA anytime soon? Let us know in the comments.

Continue reading “Turning Up The Heat On HT-PLA’s Marketing”

Garden Hose Gets Laminar Flow

We aren’t sure if [Joshua Bellamy] is serious that he wants a laminar flow to water his plants, but there are many places where having a smooth and predictable flow of water is useful or even essential. With his 3D printed adapter, you can produce laminar flow from any garden hose.

If you haven’t heard the term before, laminar flow is to water what a laser is to light. The water moves in parallel tracks with minimal mixing and turbulence. Ensuring laminar flow is often critical to precise flow metering, for example.

This isn’t [Joshua]’s first attempt. He has made a nozzle like this before, but it required a lot of assembly (“more fiddly bits than a Swedish flat-pack sofa” according to the post). Depending on the version, you’ll need various bits of extra hardware in addition to the 3D printed parts. Some versions have drop-in nuts and even an LED. Fiberglass insulation at the inlet diffuses turbulence, and some manual work on the output provided better results. When everything is working, the output of the hose should look like a glass rod, as you can see in the video below.

Air can also have laminar or non-laminar flow. Laminar air flow in a laser cutter’s air assist can make a big difference. If you don’t fancy 3D printing, you could save some drinking straws from your last few hundred trips to the local fast food emporium.

Continue reading “Garden Hose Gets Laminar Flow”

A man’s hands are shown in the foreground holding two splines, each with teeth both on the interior and exterior surfaces. Both are identical in shape, but one is larger and made of plastic, and the other is smaller and made of metal.

Freeze-drying For Improved Metal Printing

For all the remarkable improvements we’ve seen in desktop 3D printers, metal printers have tended to stay out of reach for hackers, mostly because they usually rely on precise and expensive laser systems. This makes it all the more refreshing to see [Dan Gelbart]’s demonstration of Rapidia’s cast-to-sinter method, which goes from SLA prints to ceramic or metal models.

The process began by printing the model in resin, scaled up by 19% to account for shrinkage. [Dan] then used the resin print to make a mold out of silicone rubber, after first painting the model to keep chemicals from the resin from inhibiting the silicone’s polymerization. Once the silicone had set, he cut the original model out of the mold and prepared the mold for pouring. He made a slurry out of metal powder and a water-based binder and poured this into the mold, then froze the mold and its contents at -40 ℃. The resulting mixture of metal powder and ice forms a composite much stronger than pure ice, from which [Dan] was able to forcefully peel back the silicone mold without damaging the part. Next, the still-frozen part was freeze-dried for twenty hours, then finally treated in a vacuum sintering oven for twelve hours to make the final part. The video below the break shows the process. Continue reading “Freeze-drying For Improved Metal Printing”

Slide Rule By Helix

It is no secret that we like slide rules around the Hackaday bunker, and among our favorites are the cylindrical slide rules. [Chris Staecker] likes them, too, and recently even 3D printed a version. But spurred by comments on his video, he decided to try something that might be unique: a helical slide rule. You can see how it works in the video below.

With a conventional slide rule, the scale is rotated around a cylinder so that it is the same length as a much longer linear scale. However, this new slide rule bends the entire rule around a cylinder and allows the slide to move, just like a conventional slide rule. If you have a 3D printer, you can make your own.

Continue reading “Slide Rule By Helix”

Add Wood Grain Texture To 3D Prints – With A Model Of A Log

Adding textures is a great way to experiment with giving 3D prints a different look, and [PandaN] shows off a method of adding a wood grain effect in a way that’s easy to play around with. It involves using a 3D model of a log (complete with concentric tree rings) as a print modifier. The good news is that [PandaN] has already done the work of creating one, as well as showing how to use it.

The model of the stump — complete with concentric tree rings — acts as a modifier for the much-smaller printed object (in this case, a small plate).

In the slicer software one simply uses the log as a modifier for an object to be printed. When a 3D model is used as a modifier in this way, it means different print settings get applied everywhere the object to be printed and the modifier intersect one another.

In the case of this project, the modifier shifts the angle of the fill pattern wherever the models intersect. A fuzzy skin modifier is used as well, and the result is enough to give a wood grain appearance to the printed object. When printed with a wood filament (which is PLA mixed with wood particles), the result looks especially good.

We’ve seen a few different ways to add textures to 3D prints, including using Blender to modify model surfaces. Textures can enhance the look of a model, and are also a good way to hide layer lines.

In addition to the 3D models, [PandaN] provides a ready-to-go project for Bambu slicer with all the necessary settings already configured, so experimenting can be as simple as swapping the object to be printed with a new 3D model. Want to see that in action? Here’s a separate video demonstrating exactly that step-by-step, embedded below.

Continue reading “Add Wood Grain Texture To 3D Prints – With A Model Of A Log”