Rebooting An 1973 Art Installation Running On A Nova

Electronics-based art installations are often fleeting and specific things that only a select few people who are in the right place or time get to experience before they are lost to the ravages of ‘progress.’ So it’s wonderful to find a dedicated son who has recreated his father’s 1973 art installation, showing it to the world in a miniature form. The network-iv-rebooted project is a recreation of an installation once housed within a departure lounge in terminal C of Seattle-Tacoma airport.

You can do a lot with a ‘pi and a fistful of Teensies!

The original unit comprises an array of 1024 GE R6A neon lamps, controlled from a Data General Nova 1210 minicomputer. A bank of three analog synthesizers also drove into no fewer than 32 resonators. An 8×8 array of input switches was the only user-facing input. The switches were mounted to a floor-standing pedestal facing the display.

For the re-creation, the neon lamps were replaced with 16×16 WS2811 LED modules, driven via a Teensy 4.0 using the OctoWS2811 library. The display Teensy is controlled from a Raspberry Pi 4, hooked up as a virtual serial device over USB. A second Teensy (you can’t have too many Teensies!) is responsible for scanning a miniature 8×8 push button array as well as running a simulation of the original sound synthesis setup. Audio is pushed out of the Teensy using a PT8211 I2S audio DAC, before driving a final audio power amp.

Continue reading “Rebooting An 1973 Art Installation Running On A Nova”

A picture of a single water droplet on top of what appears to be a page from a chemistry text. An orange particle is attached to the right side of the droplet and blue and black tendrils diffuse through the drop from it. Under the water drop, the caption tells us the reaction we're seeing is "K2Cr2O7+ 3H2O2 + 4H2SO4 = K2SO4+Cr2(SO4)3+7H2O+3O2(gas)"

Water Drops Serve As Canvas For Microchemistry Art

If you’re like us and you’ve been wondering where those viral videos of single water drop chemical reactions are coming from, we may have an answer. [yu3375349136], a scientist from Guangdong, has been producing some high quality microchemistry videos that are worth a watch.

While some polyglots out there won’t be phased, we appreciate the captioning for Western audiences using the elemental symbols we all know and love in addition to the Simplified Chinese. Reactions featured are typically colorful, but simple with a limited number of reagents. Being able to watch diffusion of the chemicals through the water drop and the results in the center when more than one chemical is used are mesmerizing.

We do wish there was a bit more substance to the presentation, and we’re aware not all readers will be thrilled to point their devices to Douyin (known outside of China as TikTok) to view them, but we have to admit some of the reactions are beautiful.

If you’re interested in other science-meets-art projects, how about thermal camera landscapes of Iceland, and given the comments on some of these videos, how do you tell if it’s AI or real anyway?

Design Constraints Bring Lockbox To Life

One of the most paradoxical aspects of creating art is the fact that constraints, whether arbitrary or real, and whether in space, time, materials, or rules, often cause creativity to flourish rather than to wither. Picasso’s blue period, Gadsby by Ernest Vincent Wright, Tetris, and even the Volkswagen Beetle are all famous examples of constraint-driven artistic brilliance. Similarly, in the world of electronics we can always reach for a microcontroller but this project from [Peter] has the constraint of only using passive components, and it is all the better for it.

The project is a lockbox, a small container that reveals a small keypad and the associated locking circuitry when opened. When the correct combination of push buttons is pressed, the box unlocks the hidden drawer. This works by setting a series of hidden switches in a certain way to program the combination. These switches are connected through various diodes to a series of relays, so that each correct press of a button activates the next relay. When the final correct button is pushed, power is applied to a solenoid which unlocks the drawer. An incorrect button push will disable a relay providing power to the rest of the relays, resetting the system back to the start.

The project uses a lot of clever tricks to do all of this without using a single microcontroller, including using capacitors that carefully provide timing to the relays to make them behave properly rather than all energizing at the same time. The woodworking is also notable as well, with the circuit components highlighted when the lid is opened (but importantly, hiding the combination switches). Using relays for logic is not a novel concept, though; they can be used for all kinds of complex tasks including replacing transistors in single-board computers.

Continue reading “Design Constraints Bring Lockbox To Life”

Revivification: a Room with cymbals and plinth

Posthumous Composition Being Performed By The Composer

Alvin Lucier was an American experimental composer whose compositions were arguably as much science experiments as they were music. The piece he is best known for, I Am Sitting in a Room, explored the acoustics of a room and what happens when you amplify the characteristics that are imparted on sound in that space by repeatedly recording and playing back the sound from one tape machine to another. Other works have employed galvanic skin response sensors, electromagnetically activated piano strings and other components that are not conventionally used in music composition.

Undoubtedly the most unconventional thing he’s done (so far) is to perform in an exhibit at The Art Gallery of Western Australia in Perth which opened earlier this month. That in itself would not be so unconventional if it weren’t for the fact that he passed away in 2021. Let us explain.

Continue reading “Posthumous Composition Being Performed By The Composer”

The Lowly Wall Wart Laid Bare

Getting a look at the internals of a garden variety “wall wart” isn’t the sort of thing that’s likely to excite the average Hackaday reader. You’ve probably cracked one open yourself, and even if you haven’t, you’ve likely got a pretty good idea of what’s inside that sealed up brick of plastic. But sometimes a teardown can be just as much about the journey as it is the end result.

Truth be told, we’re not 100% sure if this teardown from [Brian Dipert] over at EDN was meant as an April Fool’s joke or not. Certainly it was posted on the right day, but the style is close enough to some of his previous work that it’s hard to say. In any event, he’s created a visual feast — never in history has an AC/DC adapter been photographed so completely and tastefully.

An Ode to the Diode

[Brian] even goes so far as to include images of the 2.5 lb sledgehammer and paint scraper that he uses to brutally break open the ultrasonic-welded enclosure. The dichotomy between the thoughtful imagery and the savage way [Brian] breaks the device open only adds to the surreal nature of the piece. Truly, the whole thing seems like it should be part of some avant garde installation in SoHo.

After he’s presented more than 20 images of the exterior of the broken wall wart, [Brian] finally gets to looking at the internals. There’s really not much to look at, there’s a few circuit diagrams and an explanation of the theory behind these unregulated power supplies, and then the write-up comes to a close as abruptly as it started.

So does it raise the simple teardown to an art form? We’re not sure, but we know that we’ll never look at a power adapter in quite the same way again.

Generative Art Machine Does It One Euro At A Time

[Niklas Roy] obviously had a great time building this generative art cabinet that puts you in the role of the curator – ever-changing images show on the screen, but it’s only when you put your money in that it prints yours out, stamps it for authenticity, and cuts it off the paper roll with a mechanical box cutter.

If you like fun machines, you should absolutely go check out the video, embedded below. The LCD screen has been stripped of its backlight, allowing you to verify that the plot exactly matches the screen by staring through it. The screen flashes red for a sec, and your art is then dispensed. It’s lovely mechatronic theater. We also dig the “progress bar” that is represented by how much of your one Euro’s worth of art it has plotted so far. And it seems to track perfectly; Bill Gates could learn something from watching this. Be sure to check out the build log to see how it all came together.

You’d be forgiven if you expected some AI to be behind the scenes these days, but the algorithm is custom designed by [Niklas] himself, ironically adding to the sense of humanity behind it all. It takes the Unix epoch timestamp as the seed to generate a whole bunch of points, then it connects them together. Each piece is unique, but of course it’s also reproducible, given the timestamp. We’re not sure where this all lies in the current debates about authenticity and ownership of art, but that’s for the comment section.

If you want to see more of [Niklas]’s work, well this isn’t the first time his contraptions have graced our pages. But just last weekend at Hackaday Europe was the first time that he’s ever given us a talk, and it’s entertaining and beautiful. Go check that out next. Continue reading “Generative Art Machine Does It One Euro At A Time”

Chemistry Meets Mechatronics In This Engaging Art Piece

There’s a classic grade school science experiment that involves extracting juice from red cabbage leaves and using it as a pH indicator. It relies on anthocyanins, pigmented compounds that give the cabbage its vibrant color but can change depending on the acidity of the environment they’re in, from pink in acidic conditions to green at higher pH. And anthocyanins are exactly what power this unusual kinetic art piece.

Even before it goes into action, [Nathalie Gebert]’s Anthofluid is pretty cool to look at. The “canvas” of the piece is a thin chamber formed by plexiglass sheets, one of which is perforated by an array of electrodes. A quartet of peristaltic pumps fills the chamber with a solution of red cabbage juice from a large reservoir, itself a mesmerizing process as the purple fluid meanders between the walls of the chamber and snakes around and between the electrodes. Once the chamber is full, an X-Y gantry behind the rear wall moves to a random set of electrodes, deploying a pair of conductors to complete the circuit. When a current is applied, tendrils of green and red appear, not by a pH change but rather by the oxidation and reduction reactions occurring at the positive and negative electrodes. The colors gently waft up through the pale purple solution before fading away into nothingness. Check out the video below for the very cool results.

We find Anthofluid terribly creative, especially in the use of such an unusual medium as red cabbage juice. We also appreciate the collision of chemistry, electricity, and mechatronics to make a piece of art that’s so kinetic but also so relaxing at the same time. It’s the same feeling that [Nathalie]’s previous art piece gave us as it created images on screens of moving thread. Continue reading “Chemistry Meets Mechatronics In This Engaging Art Piece”