The Lotus Sevens: The Real Most-Hackable Cars

In the late 1940s and early 1950s, Europe was still struggling to recover from the crippling after-effects of war. In Britain it is referred to as the “austerity period”, with food still rationed and in which “make do and mend” was very much the order of the day. The consumer boom of the late 1950s and 1960s was very far in the future, and if you were a hardware hacker your source materials were limited to whatever you could find from war surplus or whatever prewar junk might come your way. This was a time in which the majority of adults had recently returned from war service, during which they had acquired practical skills through the necessities of battle that they sought an outlet for in peacetime.

One field that benefited from this unexpected flowering of creativity was that of motor racing. Before the war it had been an exclusive pursuit, with bespoke cars at famous circuits like the banked track at Brooklands, in Surrey. In a reflection of the wider social changes that followed the war the motor racers of the post-war years came from humbler backgrounds, they raced homemade specials made from tired-out prewar motors on wartime airfield perimeter tracks like the one at Silverstone which still hosts Formula One racing today.

Continue reading “The Lotus Sevens: The Real Most-Hackable Cars”

Glow-In-The-Dark Antenna Helps You Spot Your Car At Night

It’s late, and you’re lost in a sea of cars trying to remember where you parked. If only your vehicle had a glow-in-the-dark antenna to make it easier to find, you wouldn’t be in this situation. Faced with just such a problem himself, Instructables user [botzendesign] has put together a handy tutorial to do just that.

[botzendesign] first removed the antenna and lightly abraded it to help the three coats adhesion promoter do its job. A white base coat of vehicle primer was applied — lightly, so it doesn’t crack over time — and once it had set, three coats of Plasti Dip followed. Before that had a chance to dry, he started applying the glow-in-the-dark powder, another coat of Plasti Dip, repeating four more times to ensure the entire antenna had an even coat of the photo-luminescent powder and then letting it dry for 24 hours. Continue reading “Glow-In-The-Dark Antenna Helps You Spot Your Car At Night”

Toyota’s Code Didn’t Meet Standards And Might Have Led To Death

We were initially skeptical of this article by [Aleksey Statsenko] as it read a bit conspiratorially. However, he proved the rule by citing his sources and we could easily check for ourselves and reach our own conclusions. There were fatal crashes in Toyota cars due to a sudden unexpected acceleration. The court thought that the code might be to blame, two engineers spent a long time looking at the code, and it did not meet common industry standards. Past that there’s not a definite public conclusion.

[Aleksey] has a tendency to imply that normal legal proceedings and recalls for design defects are a sign of a sinister and collaborative darker undercurrent in the world. However, this article does shine a light on an actual dark undercurrent. More and more things rely on software than ever before. Now, especially for safety critical code, there are some standards. NASA has one and in the pertinent case of cars, there is the Motor Industry Software Reliability Association C Standard (MISRA C). Are these standards any good? Are they realistic? If they are, can they even be met?

When two engineers sat down, rather dramatically in a secret hotel room, they looked through Toyota’s code and found that it didn’t even come close to meeting these standards. Toyota insisted that it met their internal standards, and further that the incidents were to be blamed on user error, not the car.

So the questions remain. If they didn’t meet the standard why didn’t Toyota get VW’d out of the market? Adherence to the MIRSA C standard entirely voluntary, but should common rules to ensure code quality be made mandatory? Is it a sign that people still don’t take software seriously? What does the future look like? Either way, browsing through [Aleksey]’s article and sources puts a fresh and very real perspective on the problem. When it’s NASA’s bajillion dollar firework exploding a satellite it’s one thing, when it’s a car any of us can own it becomes very real.

Hacker Helps His Mother Lift Her Walker When He’s Not There

[typo]’s mother gets around with a walker. It’s a great assistive device until she has to lift the heavy thing up into her car. Noting that this was a little cruel he did as any hacker would and found a way to automate the process.

The build is pretty cool. She had to give up her passenger seat, but it’s a small price to pay for independence. He removed the door paneling on the passenger side. Then he welded on a few mounting points. Next he had to build the device.

The well-built device has a deceptively simple appearance. The frame is made from CNC milled panels and the ever popular aluminum extrusion. It uses a 12V right angle drive and some belting to lift the chair. There’s no abundance of fancy electronics here. A toggle switch changes the direction of the motor. There are some safety endstops and an e-stop.

Now all she has to do is strap the walker to the door. She picks the direction she wants the lift to go and presses a button. After which she walks the short distance to the driver’s seat, and cruises away.

Self-Driving R/C Car Uses An Intel NUC

Self-driving cars are something we are continually told will be the Next Big Thing. It’s nothing new, we’ve seen several decades of periodic demonstrations of the technology as it has evolved. Now we have real prototype cars on real roads rather than test tracks, and though they are billion-dollar research vehicles from organisations with deep pockets and a long view it is starting to seem that this is a technology we have a real chance of seeing at a consumer level.

A self-driving car may seem as though it is beyond the abilities of a Hackaday reader, but while it might be difficult to produce safe collision avoidance of a full-sized car on public roads it’s certainly not impossible to produce something with a little more modest capabilities. [Jaimyn Mayer] and [Kendrick Tan] have done just that, creating a self-driving R/C car that can follow a complex road pattern without human intervention.

The NUC's-eye view. The green line is a human's steering, the blue line the computed steering.
The NUC’s-eye view. The green line is a human’s steering, the blue line the computed steering.

Unexpectedly they have eschewed the many ARM-based boards as the brains of the unit, instead going for an Intel NUC mini-PC powered by a Core i5 as the brains of the unit. It’s powered by a laptop battery bank, and takes input from a webcam. Direction and throttle can be computed by the NUC and sent to an Arduino which handles the car control. There is also a radio control channel allowing the car to be switched from autonomous to human controlled to emergency stop modes.

They go into detail on the polarizing and neutral density filters they used with their webcam, something that may make interesting reading for anyone interested in machine vision. All their code is open source, and can be found linked from their write-up. Meanwhile the video below the break shows their machine on their test circuit, completing it with varying levels of success.

Continue reading “Self-Driving R/C Car Uses An Intel NUC”

Fail Of The Week: Power Wheels Racing Series

[ITMAN496] and his local HAM radio group entered the Power Wheels Racing Series with great intentions, a feeling of unlimited power, and the universal spirit of procrastination all hackers share.

It wasn’t the first time his group had worked together on something a little different, such as a robot that can deploy an antenna by climbing poles. However, this one had a time limit and they ended up trying to fit it all in the week before the race.

They had a pretty good design. [ITMAN496] had modeled the entire frame in SketchUp and even did physics simulations to get the steering just right. However, the best laid plans of mice and men often don’t fully take into account just how hard it is to get the motor drivers they bought working.

In the end, what they really needed was time to test. The setscrews couldn’t hold the motor on the shaft, the electronics needed debugging, and one of the belts was too long. The design was solid, but without time to percussively maintain the last bugs out of the system, it just wasn’t going to run.

[ITMAN496] is taking this lesson properly; he’s already planning for next year’s run, but this time he’ll have time to test. We must commend him — the build under these time constraints was still impressive. Even more so that he took the time to document everything while it was happening, and to share the story of shortfall after the fact. We’re always on the hunt for documented fails (the best way to really learn something).

Raspberry Pi Adds A Digital Dash To Your Car

Looking for a way to make your older car more hi-tech? Why not add a fancy digital display? This hack from [Greg Matthews] does just that, using a Raspberry Pi, a OBD-II Consult reader and an LCD screen to create a digital dash that can run alongside (or in front of ) your old-school analog dials.

[Greg’s] hack uses a Raspberry Pi Foundation display, which includes a touch screen, so you don’t need a mouse or other controls. Node.js displays the speed, RPM, and engine temperature (check engine lights and other warnings are planned additions) through a webpage displayed using Chromium. The Node page is pulling info from another program on the Pi which monitors the CAN Consult bus. It would be interesting to adapt this to use with more futuristic displays, maybe something like a pico projector and a 1-way mirror for a heads-up display.

To power the system [Greg] is using a Mausberry power supply which draws power from your car battery, but which also cleanly shuts down the Pi when the ignition is turned off so it won’t drain your battery. When you throw in an eBay sourced OBD-II Consult reader and the Consult Dash software that [Greg] wrote to interpret and display the data from the OBD-II Consult bus, you get a decent digital dash display. Sure, it isn’t a Tesla touchscreen, but at $170, it’s a lot cheaper. Spend more and you can easily move that 60″ from your livingroom out to your hoopty and still use a Raspberry Pi.

What kind of extras would you build into this system? Gamification of your speed? Long-term fuel averaging? Let us know in the comments.

UPDATE – This post originally listed this hack as working from the OBD-II bus. However, this car does not have OBD-II, but instead uses Consult, an older data bus used by Nissan. Apologies for any confusion!

Continue reading “Raspberry Pi Adds A Digital Dash To Your Car”