An Amateur Radio Repeater Using An RTL-SDR And A Raspberry Pi

An amateur radio repeater used to be a complex assemblage of equipment that would easily fill a 19″ rack. There would be a receiver and a separate transmitter, usually repurposed from commercial units, a home-made logic unit with a microprocessor to keep an eye on everything, and a hefty set of filters to stop the transmitter output swamping the receiver. Then there would have been an array of power supply units to provide continued working during power outages, probably with an associated bank of lead-acid cells.

More recent repeaters have been commercial repeater units. The big radio manufacturers have spotted a market in amateur radio, and particularly as they have each pursued their own digital standards there has been something of an effort to provide repeater equipment to drive sales of digital transceivers.

But what if you fancy setting up a simple repeater and you have neither a shed full of old radios or a hotline to the sales department of a large Japanese manufacturer? If you are [Anton Janovsky, ZR6AIC], you make your own low-powered repeater using an RTL-SDR, a low-pass filter, and a Raspberry Pi.

[Anton]’s repeater is a clever assemblage through pipes of rtl_sdr doing the receiving, csdr demodulating, and [F5OEO]’s rpitx doing the transmitting. As far as we can see it doesn’t have a toneburst detector or CTCSS to control its transmission so it is on air full-time, however we suspect that may be a feature that will be implemented in due course.

With only a 10 mW output this repeater is more of a toy than a useful device, and we’d suggest any licensed amateur wanting to have a go should read the small print in their licence schedule before doing so. But it’s a neat usage of a Pi and an RTL stick, and with luck it’ll inspire others in the same vein.

We’ve touched on the Pi as a transmitter before, from a straightforward broadcast FM unit to crossing continents with WSPR, and even transmitting digital TV in another [F5OEO] hack.

Mexican Highschoolers Launch 30 High Altitude Balloons

No matter whether you call them “picosatellites” or “high altitude balloons” or “spaceblimps”, launching your own electronics package into the air, collecting some high-altitude photos and data, and then picking the thing back up is a lot of fun. It’s also educational and inspirational. We’re guessing that 264 students from 30 high schools in Aguascalientes Mexico have new background screens on their laptops today thanks to the CatSat program (translated here by robots, and there’s also a video to check out below).

Continue reading “Mexican Highschoolers Launch 30 High Altitude Balloons”

Crypto Features: They’re Not For Girls

If you have worked in an office that contained a typewriter, the chances are you’ve been in the workplace for several decades. Such has been the inexorable advance of workplace computing. It’s a surprise then to discover that one of the desirable toys from many decades ago, the Barbie Typewriter, is still available. Are hipster parents buying toy versions of vintage office machinery for their children to use in an ironic fashion?

Gone though are the plastic versions of mechanical typewriters that would have been the property of a 1970s child. The modern Barbie typist has an electronic typewriter at her fingertips, with a daisy-wheel printer. We’re treated to a teardown of the recent models courtesy of Crypto Museum, who reveal a hidden feature, Barbie’s typewriter can encrypt and decrypt messages.

Now the fact that a child’s toy boasts a set of simple substitution cyphers is hardly the kind of thing that will set the pulses of Hackaday readers racing, after all simple letter frequency analysis is hardly new. But of course, the Crypto Museum angle is only part of this story.

This toy is made in a suitably eye-watering shade of pink, and sold by Mattel with Barbie branding. But it didn’t start life as a Barbie product, instead it’s licensed from the Slovenian manufacturer Mehano. The original toy makes no secret of the crypto functions, but though they persist in the software on the Barbie version they are mysteriously absent from the documentation. The achievements of American women are such that they have given us high-level languages and compilers, or their software has placed men on the Moon, yet it seems when they are young a brush with elementary cryptology is beyond them in the way that it isn’t for their Slovenian sisters. This is no way to nurture a future Grace Hopper or Margaret Hamilton, though sadly if your daughter is a Lisa Simpson this is just one of many dumbed-down products she’ll be offered.

If you see a Barbie electronic typewriter in a yard sale or similar, and you can pick it up for a few dollars, buy it. It’s got a simple daisywheel printer mechanism that looks eminently hackable. Just don’t buy it for your daughter without also printing out the Crypto Museum page for her as the missing manual.

When the Martian lander running her code has touched down safely, you’ll be glad you did.

Via Adafruit.

Hacking a Device That Lives Inside the Matrix

[Gerardo Iglesias Galván] decided he wanted to try his hand at bug-bounty hunting — where companies offer to pay hackers for finding vulnerabilities. Usually, this involves getting a device or accessing a device on the network, attacking it as a black box, and finding a way in. [Gerrado] realized that some vendors now supply virtual images of their appliances for testing, so instead of attacking a device on the network, he put the software in a virtual machine and attempted to gain access to the device. Understanding the steps he took can help you shore up your defenses against criminals, who might be after more than just a manufacturer’s debugging bounty.

Continue reading “Hacking a Device That Lives Inside the Matrix”

Insanely Hot Oven Makes Pizza in 45 Seconds: Avidan Ross on Food Hacking

In the future, nobody will have to cook for themselves: the robots will take care of it all for us. And fast! At least if folks like [Avidan Ross] have their way. He gave a talk on his 45-second pizza robot, and other DIY food automations, at the 2016 Hackaday SuperConference, and you’re invited to pretend that you were there by watching this video.

Why would you want to build machines to build food? It’s a serious challenge, and there’s always going to be room to improve and new frontiers to cross. There’s immediate feedback: [Avidan] gets to taste and tweak in a quick feedback cycle. And finally, everybody eats, so it’s not hard to find “test subjects” for his work.

Continue reading “Insanely Hot Oven Makes Pizza in 45 Seconds: Avidan Ross on Food Hacking”

Taking It To Another Level: Making 3.3V Speak with 5V

If your introduction to digital electronics came more years ago than you’d care to mention, the chances are you did so with 5V TTL logic. Above 2V but usually pretty close to 5V is a logic 1, below 0.8V is a logic 0. If you were a keen reader of electronic text books you might have read about different voltage levels tolerated by 4000 series CMOS gates, but the chances are even with them you’d have still used the familiar 5 volts.

This happy state of never encountering anything but 5V logic as a hobbyist has not persisted. In recent decades the demands of higher speed and lower power have given us successive families of lower voltage devices, and we will now commonly also encounter 3.3V or even sometimes lower voltage devices. When these different families need to coexist as for example when interfacing to the current crop of microcontroller boards, care has to be taken to avoid damage to your silicon. Some means of managing the transition between voltages is required, so we’re going to take a look at the world of level shifters, the circuits we use when interfacing these different voltage logic families.

Continue reading “Taking It To Another Level: Making 3.3V Speak with 5V”

Breathe Easy with a Laser Cutter Air Filter

A laser cutter is a great tool to have in the shop, but like other CNC machines it can make a lousy neighbor. Vaporizing your stock means you end up breathing stuff you might rather not. If you’re going to be around these fumes all day, you’ll want good fume extraction, and you might just consider a DIY fume and particulate filter to polish the exhausted air.

15203365_644939182347358_619032134291602214_nWhile there’s no build log per se, [ZbLab]’s Facebook page has a gallery of photos that show the design and build in enough detail to get the gist. The main element of the filter is 25 kg of activated charcoal to trap the volatile organic compounds in the laser exhaust. The charcoal is packed into an IKEA garbage can around a prefilter made from a canister-style automotive air cleaner – [ZbLab] uses a Filtron filter that crosses to the more commonly available Fram CA3281. Another air cleaner element (Fram CA3333) makes sure no loose charcoal dust is expelled from the filter. The frame is built of birch ply and the plumbing is simple PVC. With a 125mm inlet it looks like this filter can really breathe, and it would easily scale up or down in size according to your needs.

No laser cutter in your shop to justify this filter, you say? Why not build one? Or, if you do any soldering, this downdraft fume extractor is a good way to clear the air.