Supercon 2024: Sketching With Machines

When it comes to our machines, we generally have very prescribed and ordered ways of working with them. We know how to tune our CNC mill for the minimum chatter when its chewing through aluminium. We know how to get our FDM printer to lay perfect, neat layers to minimize the defects in our 3D prints.

That’s not what Blair Subbaraman came down to talk about at the 2024 Hackaday Supercon, though. Instead, Blair’s talk covered the magic that happens when you work outside the built-in assumptions and get creative. It’s all about sketching with machines.

Continue reading “Supercon 2024: Sketching With Machines”

DIY Record Cutting Lathe Is Really Groovy

Back in the day, one of the few reasons to prefer compact cassette tape to vinyl was the fact you could record it at home in very good fidelity. Sure, if you had the scratch, you could go out and get a small batch of records made from that tape, but the machinery to do it was expensive and not always easy to come by, depending where you lived. That goes double today, but we’re in the middle of a vinyl renaissance! [ronald] wanted to make records, but was unable to find a lathe, so decided to take matters into his own hands, and build his own vinyl record cutting lathe.

photograph of [ronald's] setup
[ronald’s] record cutting lathe looks quite professional.
It seems like it should be a simple problem, at least in concept: wiggle an engraving needle to scratch grooves in plastic. Of course for a stereo record, the wiggling needs to be two-axis, and for stereo HiFi you need that wiggling to be very precise over a very large range of frequencies (7 Hz to 50 kHz, to match the pros). Then of course there’s the question of how you’re controlling the wiggling of this engraving needle. (In this case, it’s through a DAC, so technically this is a CNC hack.) As often happens, once you get down to brass tacks (or diamond styluses, as the case may be) the “simple” problem becomes a major project. Continue reading “DIY Record Cutting Lathe Is Really Groovy”

An attractive orange CNC mill sitting ona bench.

3D Printed Milling Machine Is Solid As A Rock

There are no shortage of CNC machines in the DIY space these days, but sometimes you just need to do things your own way. That’s what [Chris Borges] decided when he put together this rock-solid, concrete-filled CNC milling machine.

The concrete body of this machine is housed inside a 3D printed shell, which makes for an attractive skin as well as a handy mold. Within the concrete is a steel skeleton, with the ‘rebar’ being made of threaded rods and a length of square tubing to hold the main column. You can see the concrete being poured in around the rebar in the image, or watch it happen in the build video embedded below.

An image of the main column of [Chris]'s CNC mill as the concrete is added. The steel reinforcement is clearly visible.
In goes the concrete, up goes the rigidity.
All three axes slide on linear rails, and are attached to lead screws driven by the omnipresent NEMA 17 steppers. The air-cooled spindle, apparently the weak-point of the design, is attached to a pivoting counterweight, but make no mistake: it is on rails. All-in-all, it looks like a very rigid, and very capable design — [Chris] shows it cutting through aluminum quite nicely.

Given that [Chris] has apparently never used a true mill before, this design came out remarkably well. Between the Bill of Materials and 45 page step-by-step assembly instructions, he’s also done a fantastic job documenting the build for anyone who wants to put one together for themselves.

This isn’t the first concrete-filled project we’ve highlighted from [Chris], you may remember seeing his lathe on these pages. It certainly isn’t the first CNC mill we’ve covered, either.

Continue reading “3D Printed Milling Machine Is Solid As A Rock”

Your Badminton Racket Needs Restringing? There’s A DIY Machine For That

We don’t often get our badminton rackets restrung, but if we did, [kuokuo702]’s PicoBETH project would be where we’d turn. This is a neat machine build for a very niche application, but it’s also a nicely elaborated project with motors, load cells, and even a sweet knobby-patterned faceplate that is certainly worth a look even if you’re not doing your own restringing.

We’ll admit that everything we know about restringing rackets we learned by watching [kuokuo]’s demo video, but the basic procedure goes like this: you zigzag the string through the holes in the racket, controlling the tension at each stage along the way. A professional racket frame and clamp hold the tension constant while you fiddle the string through the next hole, but getting the tension just right in the first place is the job of [kuokuo]’s machine. It does this with a load cell, stepper motor, and ball screw, all under microcontroller control. Pull the string through, let the machine tension it, clamp it down, and then move on to the next row.

Automating the tension head allows [kuokuo] to do some fancy tricks, like pre-stretching the strings and even logging the tension in the string at each step along the way. The firmware has an extensive self-calibration procedure, and in all seems to be very professional. But it’s not simply functional; it also has a fun LEGO-compatible collection of bumps integrated into the 3D-printed dust cover. That way, your minifigs can watch you at work? Why not!

Automating random chores is a great excuse to build fun little machines, and in that vein, we salute [kuokuo]’s endeavor. Once you start, you’ll find stepper motors sprouting all around like crocuses in a spring field. And speaking of spring, Easter is just around the corner. So if you don’t play badminton, maybe it’s time to build yourself an eggbot.

Continue reading “Your Badminton Racket Needs Restringing? There’s A DIY Machine For That”

Mural: The Plotter That Draws On Walls

Let’s say you’ve got a big bare wall in your home, and you want some art  on it. You could hang a poster or a framed artwork, or you could learn to paint a mural yourself. Or, like [Nik Ivanov], you could build a plotter called Mural, and get it to draw something on the wall for you. 

The build is straightforward enough. It uses a moving carriage suspended from toothed belts attached to two points up high on the wall. Stepper motors built into the carriage reel the belts in and out to move it up and down the wall, and from side to side. In this case, [Nik] selected a pair of NEMA 17 steppers to do the job. They’re commanded by a NodeMCU ESP32, paired with TMC2209 stepper motor drivers. The carriage also includes a pen lifter, which relies on a MG90s servo to lift the drawing implement away from the wall.

The build is quite capable, able to recreate SVG vector graphics quite accurately, without obvious skew or distortion. [Nik] has been using the plotter with washable Crayola markers, so he can print on the wall time and again without leaving permanent marks. It’s a great way to decorate—over and over again—on a budget. Total estimated cost is under $100, according to [Nik].

We’ve featured some neat projects along these lines before, too. Video after the break.

Continue reading “Mural: The Plotter That Draws On Walls”

“Unnecessary” Automation Of A DIY Star Lamp Build

It all started with a gift idea: a star-field lamp in the form of a concrete sphere with lightpipes poking out where the stars are, lit up from the inside by LEDs. When you’re making one of these, maybe-just-maybe you’d be willing to drill a thousand holes and fit a thousand little plastic rods, but by the time you’re making a second, it’s time to build a machine to do the work for you.

So maybe we quibble with the channel name “Unnecessary Automation,” but we won’t quibble with the results. It’s a machine that orients a sphere, drills the hole, inserts the plastic wire, glues it together with a UV-curing glue, and then trims the end off. And if you like crazy machines, it’s a beauty.

The video goes through all of the design thoughts in detail, but it’s when it comes time to build the machine that the extra-clever bits emerge. For instance, [UA] used a custom 3D-printed peristaltic pump to push the glue out. Taking the disadvantage of peristaltic pumps – that they pulse – as an advantage, a custom housing was designed that dispensed the right amount between the rollers. The rolling glue dispenser mechanism tips up and back to prevent drips.

There are tons of other project-specific hacks here, from the form on the inside of the sphere that simplifies optic bundling and routing to the clever use of a razor blade as a spring. Give it a watch if you find yourself designing your own wacky machines. We think Rube Goldberg would approve. Check out this video for a more software-orientated take on fiber-optic displays.

Continue reading ““Unnecessary” Automation Of A DIY Star Lamp Build”

CNC Router And Fiber Laser Bring The Best Of Both Worlds To PCB Prototyping

Jack of all trades, master of none, as the saying goes, and that’s especially true for PCB prototyping tools. Sure, it’s possible to use a CNC router to mill out a PCB, and ditto for a fiber laser. But neither tool is perfect; the router creates a lot of dust and the fiberglass eats a lot of tools, while a laser is great for burning away copper but takes a long time to burn through all the substrate. So, why not put both tools to work?

Of course, this assumes you’re lucky enough to have both tools available, as [Mikey Sklar] does. He doesn’t call out which specific CNC router he has, but any desktop machine should probably do since all it’s doing is drilling any needed through-holes and hogging out the outline of the board, leaving bridges to keep the blanks connected, of course.

Once the milling operations are done, [Mikey] switches to his xTool F1 20W fiber laser. The blanks are placed on the laser’s bed, the CNC-drilled through holes are used as fiducials to align everything, and the laser gets busy. For the smallish boards [Mikey] used to demonstrate his method, it only took 90 seconds to cut the traces. He also used the laser to cut a solder paste stencil from thin brass shim stock in only a few minutes. The brief video below shows the whole process and the excellent results.

In a world where professionally made PCBs are just a few mouse clicks (and a week’s shipping) away, rolling your own boards seems to make little sense. But for the truly impatient, adding the machines to quickly and easily make your own PCBs just might be worth the cost. One thing’s for sure, though — the more we see what the current generation of desktop fiber lasers can accomplish, the more we feel like skipping a couple of mortgage payments to afford one.

Continue reading “CNC Router And Fiber Laser Bring The Best Of Both Worlds To PCB Prototyping”