CNC Mill Out Of A Building Set

I have some aluminum building-set parts on hand and just got a second rotary tool, so I thought I’d try my hand at making a light-duty CNC mill—maybe carve up some cheap pine or make circuit boards. This post explores some of the early decisions I’m facing as I begin the project.

Of primary importance is the basic format of the mill’s chassis. Gantry configuration or put everything in a box of girders? How will the axes move–belts or racks? How will the Z-axis work, the assembly that lowers the tool onto the material? Finally, once the chassis is complete, or perhaps beforehand, I’ll need to figure out how I intend to control the thing.

Continue reading “CNC Mill Out Of A Building Set”

Fabricate Your Own Tabletop Gaming Props

Delve into the mysterious world of tabletop roleplaying games. Warhammer Fantasy Roleplay, Shadowrun, Pathfinder, Ars Magica, Vampire, whatever gets your dice rollin’ — metaphorically in the case of a diceless system. This might very well be your daddy’s D&D. If you’re not a gamer, you’re certainly familiar with the concept. People sit around a table pretending to have an epic adventure, often adding a random element with the help of dice. A map is often displayed on the table, sized for figures that show the various heroes and villains.

As a person with access to a variety of CNC machines I find myself wanting to create things to make gameplay more fun. I want to build a scale castle and have a siege. I want to conduct a ship-to-ship battle with wooden ships built to scale. But I also think smaller. What is something I could make that would help us every day? Say, a box for dice. Not every project needs to be the dragon’s lair.

It turns out a lot of other folks have been thinking about the same thing.

Continue reading “Fabricate Your Own Tabletop Gaming Props”

Laser Cutting Orreries

An orrery is a clockwork model of the solar system, demonstrating the machinations of the planets traveling around the sun in a sublime pattern of epicycles. A tellurion is a subset of the orrery, showing the rotation of the Earth around the sun, and the orbit of the moon around the Earth. [HuidongT] created his own tellurion out of laser-cut parts and just a few bits of copper tubes and bearings.

This project was originally inspired by the holzmechanik, a tellurion constructed from plywood gears and brass tube. [HuidongT] saw a few shortcomings in this project: the Earth didn’t spin and the moon didn’t orbit with its natural five-degree inclination. [Huidong]’s tellurion would have these features and include an illuminated sun, demonstrate the change of the seasons, and show lunar and solar eclipses.

While there was a bit of math involved in figuring out the gearing, it’s not much: the Earth would go around the sun every 365.25 days, the moon would go around the Earth every 27.32 days, and there is a difference between sidereal and solar time. A quick script made quick work of the math, and anyone can easily find tools to create gears given a diameter and the number of teeth.

The fabrication of this tellurion was made with acrylic on a laser cutter with a handful of 3D printed parts. The electronics are simple enough — just a motor and a few LEDs, and the completed project works well enough. You can check out a video of the tellurium below.

Continue reading “Laser Cutting Orreries”

A Poor-Man’s Laser CNC Engraver

What do you get when you mix the disappointment that sometimes accompanies cheap Chinese electronics with the childhood fascination of torturing insects with a magnifying glass on a sunny day? You get a solar-powered CNC etcher, that’s what.

We all remember the days of focussing the sun on a hapless insect, or perhaps less sadistically on a green plastic army man or just a hunk of dry wood. The wonder that accompanied that intense white spot instantly charring the wood and releasing wisps of smoke stayed with you forever, as seemingly did the green spots in your vision. [drum303] remembered those days and used them to assuage his buyer’s remorse when the laser module on his brand new CNC engraver crapped out after the first 10 minutes. A cheap magnifying glass mounted to the laser holder and a sunny day, and he don’t need no stinkin’ lasers! The speed needs to be set to a super slow — 100mm per minute — and there’s the problem of tracking the sun, but the results are far finer than any of our childhood solar-artistic attempts ever were.

Do we have the makings of a possible performance art piece here? A large outdoor gantry with a big Fresnel lens that could etch a design onto a large piece of plywood would be a pretty boss beachside attraction. Of course, you’d need a simple solar tracker to keep things in focus.

Continue reading “A Poor-Man’s Laser CNC Engraver”

Download And Laser Your Own Pulleys

[Scott Swaaley] needed a bunch of timing pulleys for the clock he was building. He had already decided on the MXL profile, but he needed so many of these toothed pulleys in so many configurations (hex-bored, hubless) that it would blow out his budget. Plus, he wanted them transparent as well. So why not just laser them out of acrylic?

Not finding anything useful on the manufacturers’ sites, [Scott] decided to create his own web application to generate the shapes and download them as SVGs, dreaming of a resource like Gear Generator except for timing pulleys instead of involute spur gears. [Scott] has the application running on his GitHub. You can create MXL, XL, and L pulleys with any number of teeth and any hole size. From there you can output as an SVG and laser or mill the pulley.

There’s a lot of potential for projects made with pulleys and we’ve covered them extensively. Check out a 3D-printed strain wave gear, an inexpensive XY table, and even a remote operated gate for more pulley ideas.

Home Built PCB Mill Reportedly Doesn’t Suck

It’s 2017, and getting a PCB professionally made is cheaper and easier than ever. However, unless you’re lucky enough to be in Shenzhen, you might find it difficult to get them quickly, due to the vagaries of international shipping. Whether you want to iterate quickly on designs, or just have the convenience of speed, it can be useful to be able to make your own PCBs at home. [Timo Birnschein] had just such a desire and set about building a PCB mill that doesn’t suck.

It might sound obvious, but it bears thinking about — if you know you’re incapable of building a good PCB mill in a reasonable period of time, you might save yourself a lot of pain and lost weekends by just ordering PCBs elsewhere. [Timo] was fairly confident however that the build would be able to churn out some usable boards, however, and got to work.

The build is meant to be accessible to the average hacker who wants one. The laser cut & 3D printed parts are readily available these days thanks to online services that can manufacture for those who don’t have the machines at home. [Timo] uses a rotary multitool for a spindle, a common choice for a budget CNC build.

With the hardware complete, [Timo] has spent time working on optimising the software side of things. Through careful optimisation of the G-Code, [Timo] has been able to improve performance and reduce stress on the tooling. It’s not enough to just build a good mill — you’ve got to have your G-Code squared away as well.

Overall, the results speak for themselves. The boards don’t suck; the mill can do traces down to 8 mil, and even drill the holes. We’d love to have one on the workbench when busting out some quick prototypes. For another take on the home-built PCB mill, why not check out this snap-together version?

Featured Image

Go Go Camera Slider

Are your arms getting tired from pushing your camera back and forth across your camera slider? That must be the case with [Max Maker], which led him to convert his manual slider into a motorized one.

The electronics are minimal — an Arduino Micro, a few toggle switches, A4988 Stepper Driver, 12V battery pack, and the ever popular NEMA 17 stepper motor. If you’re wondering why we said ‘switches’ instead of ‘switch’, it’s because 4 of the switches are used to select a time frame. The time frame being how long it takes for the slider to move from one end to the other.

Fabrication shown off in the video below will net you a few new tricks. Our favorite is how he makes a template for the NEMA motor using masking tape. After completely covering the face of the motor with tape, he clearly marks the mounting holes and colors in the shape of the motor plate as if he were doing frottage. Then just pull the tape off as one and stick it onto the slider rack.

Not including the cost of the slider itself, the parts list came out to be around $75. Even if you don’t yet own a slider, this a great first adventure into building a CNC machine. It is one degree of freedom and the hard parts have already been taken care of by the manufacturer of the slider. Get used to using belts and programming for stepper motors and you’ll be whipping up your own 3D printer with a fancy belt scheme for the Z-axis.

Continue reading “Go Go Camera Slider”