Sudo Make Me a Sandwich

How do you like your Ham and Cheese sandwich? If you answered “I prefer it beefy”, look no further than [William Osman]’s Vin Diesel Ham and Cheese Sandwich! [Osman]’s blog tagline is “There’s science to do” but he is the first to admit this is science gone too far. When one of his followers, [Restroom Sounds], commented “Please sculpt a bust of [Vin Diesel] using laser cut cross-sections of laser sliced ham”, he just had to do it.

His friend [CameraManJohn] modeled the bust using Maya and [Osman] has provided links to download the files in case there’s the remote possibility that someone else wants to try this out. They picked the cheapest packs of sliced ham they could get from the supermarket — so technically, they did not actually laser slice the ham. For help with generating the slice outlines, they found the Slicer app for Autodesk’s Fusion 360 which did exactly what needed to be done. The app converts the 3D model into individual cross sections, similar to an MRI. It helps to measure the thickness of various samples of your raw material so that the Slicer output is not too stretched (or squished). The result is a set of numbered 2D drawings that can be sent to your laser cutter.

The rest of the video scores pretty high on the gross-o-meter, as [Osman] goes about laser cutting slices of ham (and a few slices of cheese), tasting laser cut ham (for Science, of course), and trying to prevent his computer from getting messed up. In the end, the sandwich actually turns out looking quite nice, although we will not comment on its taste. A pair of googly eyes adds character to the bust.

One problem is that the Slicer app does not optimise its results for efficient packing. with the smallest part occupying the same bounding box as the largest. This leads to a lot of wasted pieces of ham slices to be thrown away. [Bill] is still wondering what to do with his awesome sandwich, so if you have suggestions, chime in with your comments after you’ve seen the video linked below. If you know [Vin Diesel], let him know.

This isn’t [Osman]’s first adventure with crazy food hacks — here are a few tasty examples: a Toast-Bot that Butters For You (sometimes), a Laser-Cut Gingerbread Trailer Home, and a Pumpkin-Skinned BattleBot.

Continue reading “Sudo Make Me a Sandwich”

Converting An Easy Bake Oven To USB

[Jason] converted an Easy Bake Oven to USB. If you have to ask why you’ll never know.

Easy Bake Ovens have changed a lot since you burnt down your house by installing a 100 Watt light bulb inside one. Now, Easy Bake Ovens are [bigclive] material. It’s a piece of nichrome wire connected through a switch across mains power. Part of the nichrome wire is a resistor divider used to power a light. This light assembly is just a LED, some resistors, and a diode wired anti-parallel to the LED.

This is a device designed for 120 V, but [Jason] wanted it to run on USB-C. While there are USB-C chargers that will supply enough power for an Easy Bake Oven, the voltage is limited to 20V. Rather than step up the USB-C voltage, [Jason] added some nichrome wires to divide it into six equal segments, then wired all the segments in parallel. This lowers the voltage by one sixth and increases the current by a factor of six. Good enough.

The power supply used for this hack is the official Apple 87W deal, with a USB-C breakout board (available on Tindie, buy some stuff on Tindie. Superliminial advertising) an Arduino Uno connected to the I2C pins. A few bits of code later, and [Jason] had a lot of power coming over a USB cable.

With the Easy Bake Oven fully converted, [Jason] whipped up a batch of cookie mix. After about 15 minutes the cookies crisped up and started to look almost appetizing.

While the result is weird — who on Earth would ever want a USB-powered Easy Bake Oven — this is honestly a fantastic test of [Jason]’s USB-C PHY breakout board. What better way to test a USB-C than a big resistive load, and what better resistive load is there than an Easy Bake Oven? It’s brilliant and hilarious at the same time.

Tea Making The Mechanical Way

For some of those who are aficionados of the drink, tea making can be serious business. For them, strong, black, leaf tea left for ages to stew in a stained teapot that would strip the hairs off your chest (like it should be made) just won’t do. These beverage anarchists demand a preparation process of careful temperature regulation and timing, and for some reason repeatedly dunking a teabag in the water.

For them, [Dorian Damon] has an automated solution to getting the crucial dunking process right. He’s made an automatic tea bag dunker. The teabag is mounted on a slide operated by a crank, and the crank is driven through a pair of bicycle hubs. Motive power comes from a mains shaded-pole motor, an unusual bi-directional one of which he only uses one side. He measured his personal dunking rate at about 50 per minute, so he only needed a 4:1 reduction to match the motor at 200 RPM.

The resulting machine will happily dunk his tea bag at that rate for as long as it’s left switched on. He’s put a few videos up, of which we’ve posted one below the break.

Continue reading “Tea Making The Mechanical Way”

A Little IoT for Your PID Tea Kettle

For some folks, tea is a simple pleasure – boil water, steep tea, enjoy. There are those for whom tea is a sacred ritual, though, and the precise temperature control they demand requires only the finest in water heating technology. And then there are those who take things even further by making a PID-controlled electric tea kettle an IoT device with Amazon Echo integration.

Nothing worth doing isn’t worth overdoing, and [luma] scores points for that. Extra points too for prototyping an early iteration of his design on a RadioShack Electronics Learning Lab – the one with a manual written by Forrest Mims. [luma] started out using an Arduino with a Zigbee shield but realized the resulting circuit would have to live in an external enclosure. Switching to an ESP8266, the whole package – including optoisolators, relays, and a small wall-wart – is small enough to fit inside the kettle’s base. The end result is an MQTT device that publishes its status to his SmartThings home automation system, and now responds when he tells Alexa it’s time for tea.

Projects that hack the means of caffeine are no strangers to Hackaday, whether your preferred vector is tea, coffee, or even straight up.

Continue reading “A Little IoT for Your PID Tea Kettle”

An Eggcelent Eggspriment

After multiple iterations [Keef] has nailed down the fabrication process for an unusual component. Using only a heater water bath, some silicone and easily available reagents, [Keef] demonstrate how he manufactures a gastronomic enigma: the long egg.

The similarities between [Keef’s] process and the typical hacker iteration cycle are eggceptional. He starts out with a goal and iterates, modifying his methods until he gets the perfect long egg. Sound familiar? Cooking can be as much of a science as it is an art.

In his quest, [Keef] utilizes sausage casing, plastic bags, sticky tape, “lots of sweat and almost some tears” to hold eggs for cooking via an Anova Precision Cooker immersion circulator. However, [Keef] notes, the Anova is normally used for sous vide cooking so you might not have one sitting around. In that case, you can use a regular pan on a stovetop along with a digital thermometer, but you’ll have to be quite vigilant to keep the temperature steady.

But wait. Why would one want a long egg in the first place? I’ll leave this explanation to [Keef]. “Well, the main use is in a Gala Pie (a long pork pie baked in a loaf tin and often cut into slices for picnics). Or you could just slice the egg and lay it out on a platter and amaze your friends with how every slice is exactly the same size.”

Go check out [Keef’s] two videos. He has two, one that chronicles the eggciting initial attempts, and another that describes his final method. With [Keef’s] help, the number of long eggs outside of Denmark may substantially increase. But, if you’d rather have some pizza, we won’t be offended.

Pancake-ROM: Eat-only Memory?

You can store arbitrary data encoded in binary as a pattern of zeros and ones. What you do to get those zeros and ones is up to you. If you’re in a particularly strange mood, you could even store them as strips of chocolate on Swedish pancakes.

Oddly enough, the possibility of the pancake as digital storage medium was what originally prompted [Michael Kohn] to undertake his similar 2013 project where he encoded his name on a paper wheel. Perhaps wisely, he prototyped on a simpler medium. With that perfected, four years later, it was time to step up to Modified Swedish Pancake Technology (MSPT).

pancake_rom_bottomHighlights of the build include trying to optimize the brightness difference between chocolate and pancake. Reducing the amount of sugar in the recipe helps increase contrast by reducing caramelization, naturally. And cotton balls placed under the spinning cardboard platform can help stabilize the spinning breakfast / storage product.

Even so, [Michael] reports that it took multiple tries to get the sixteen bytes (bites?) of success in the video below. The data is stenciled onto the pancake and to our eye is quite distinct. Improvement seems to be more of an issue with better edge detection for the reflectance sensor.

Continue reading “Pancake-ROM: Eat-only Memory?”

M&Ms and Skittles Sorting Machine is Both Entertainment and Utility

If you have OCD, then the worst thing someone could do is give you a bowl of multi-coloured M&M’s or Skittles — or Gems if you’re in the part of the world where this was written. The candies just won’t taste good until you’ve managed to sort them in to separate coloured heaps. And if you’re a hacker, you’ll obviously build a sorting machine to do the job for you.

Use our search box and you’ll find a long list of coverage describing all manner and kinds of sorting machines. And while all of them do their designated job, 19 year old [Willem Pennings]’s m&m and Skittle Sorting Machine is the bees knees. It’s one of the best builds we’ve seen to date, looking more like a Scandinavian Appliance than a DIY hack. He’s ratcheted up a 100k views on Youtube, 900k views on imgur and almost 2.5k comments on reddit, all within a day of posting the build details on his blog.

As quite often happens, his work is based on an earlier design, but he ends up adding lots of improvements to his version. It’s got a hopper at the top for loading either m&m’s or Skittles and six bowls at the bottom to receive the color sorted candies. The user interface is just two buttons — one to select between the two candy types and another to start the sorting. The hardware is all 3D printed and laser cut. But he’s put in extra effort to clean the laser cut pieces and paint them white to give it that neat, appliance look. The white, 3D printed parts add to the appeal.

Rotating the input funnel to prevent the candies from clogging the feed pipes is an ace idea. A WS2812 LED is placed above each bowl, lighting up the bowl where the next candy will be ejected and at the same time, a WS2812 strip around the periphery of the main body lights up with the color of the detected candy, making it a treat, literally, to watch this thing in action. His blog post has more details about the build, and the video after the break shows the awesome machine in action.

And if you’re interested in checking out how this sorter compares with some of the others, check out these builds — Skittles sorting machine sorts Skittles and keeps the band happy, Anti-Entropy Machine Satiates M&M OCD, Only Eat Red Skittles? We’ve Got You Covered, and Hate Blue M&M’s? Sort Them Using the Power of an iPhone!  As we mentioned earlier, candy sorting machines are top priority for hackers.

Continue reading “M&Ms and Skittles Sorting Machine is Both Entertainment and Utility”