AVRO’s Project 1794: A Canadian Flying Saucer

If you ask those of us who grew up somewhere in the 1950s to 1970s what our car would be like in the year 2020, we might have described an Avrocar. This top secret vehicle from Canadian Avro was part hovercraft and part jet-powered vertical takeoff vehicle. There were two prototypes actually made and [Real Engineering] has a short video on how the prototypes worked, how the real design might have worked, and even has a lot of footage of the actual devices. You can see the video below.

The designer, [Jack Frost], experimented with ground effect and the Coanda effect. The Canadian branch of Avro, a British company, worked with the U.S. military and if you look at it, you wonder how many UFO sightings it caused. Nothing like a flying disk 18 feet in diameter going over your backyard to make you call the newspapers. On second thought, it probably never got enough altitude for that to happen.

Continue reading “AVRO’s Project 1794: A Canadian Flying Saucer”

Who Invented The Mouse? Are You Sure?

If you ask most people who invented the mouse, they won’t know. Those that do know, will say that Doug Englebart did. In 1964 he had a box with two wheels that worked like a modern mouse as part of his work at Stanford Research Institute. There is a famous demo video from 1968 of him showing off what looks a lot like an old Mcintosh computer. Turns out, two other people may have an earlier claim to a mouse — or, at least, a trackball. So why did you never hear about those?

The UK Mouse

Ralph Benjamin worked for Britain’s Royal Navy, developing radar tracking systems for warships. Right after World War II, Ralph was working on the Comprehensive Display System — a way for ships to monitor attacking aircraft on a grid. They used a “ball tracker.” Unlike Engelbart’s mouse, it used a metallic ball riding on rubber-coated wheels. This is more like a modern non-optical mouse, although the ball tracker had you slide your hand across the ball instead of the other way around. Sort of a trackball arrangement.

Continue reading “Who Invented The Mouse? Are You Sure?”

Tetraethyl Lead: The Solution To One, And Cause Of Many New Problems

From the 1920s until the 1970s, most gasoline cars in the USA were using fuel that had lead mixed into it. The reason for this was to reduce the engine knocking effect from abnormal combustion in internal combustion engines of the time. While lead — in the form of tetraethyllead — was effective at this, even the 1920s saw both the existence of alternative antiknock agents and an uncomfortable awareness of the health implications of lead exposure.

We’ll look at what drove the adoption of tetraethyllead, and why it was phased out once the environmental and health-related issues came into focus. But what about its antiknock effects? We’ll also be looking at the alternative antiknock agents that took its place and how this engine knocking issue is handled these days.

Continue reading “Tetraethyl Lead: The Solution To One, And Cause Of Many New Problems”

Why Do Resistors Have A Color Code?

One of the first things you learn in electronics is how to identify a resistor’s value. Through-hole resistors have color codes, and that’s generally where beginners begin. But why are they marked like this? Like red stop signs and yellow lines down the middle of the road, it just seems like it has always been that way when, in fact, it hasn’t.

Before the 1920s, components were marked any old way the manufacturer felt like marking them. Then in 1924, 50 radio manufacturers in Chicago formed a trade group. The idea was to share patents among the members. Almost immediately the name changed from “Associated Radio Manufacturers” to the “Radio Manufacturer’s Association” or RMA.  There would be several more name changes over the years until finally, it became the EIA or the Electronic Industries Alliance. The EIA doesn’t actually exist anymore. It exploded into several specific divisions, but that’s another story.

This is the tale of how color bands made their way onto every through-hole resistor from every manufacturer in the world.

Continue reading “Why Do Resistors Have A Color Code?”

Hide Silent, Hide Deep: Submarine Tracking Technologies Of The Cold War

All through the cold war, there was a high-stakes game of cat and mouse in play. Nuclear powers like the United States and the Soviet Union would hide submarines armed with nuclear missiles underwater. The other side would try to know where they were so they could be targeted in the event of war. The common wisdom was that the United States had many high tech gadgets to help track enemy submarines, but that the Soviet Union was way behind in this area. This was proven false when a Soviet Victor-class boat followed a US missile submarine for six days. Now, a recently declassified CIA report shows how the Soviets didn’t use sonar at all but developed their own technology.

There is something fascinating about submarines. Like an old sailing ship, submarines are often out of touch with their command bases and the captain is the final authority. Like a space ship, the submarine has to survive in an inimical environment. I guess in all three cases, the crew doesn’t just use technology, they depend on it.

Although the submarine has some non-military uses, there are probably more military subs than any other type. After all, a sub is as close to a cloaking device as any real-life military vehicle has ever had. Before modern technology offered ways to find submarines using sonar or magnetic anomalies, a completely submerged submarine was effectively invisible.

There was a lot of speculation that the Soviet Union lacked sufficient technology to use sonar  the way the US did. However, in some cases, they had simply developed different types of detection — many of which the West had discarded as impractical.

Continue reading “Hide Silent, Hide Deep: Submarine Tracking Technologies Of The Cold War”

BeOS: The Alternate Universe’s Mac OS X

You’re likely familiar with the old tale about how Steve Jobs was ousted from Apple and started his own company, NeXT. Apple then bought NeXT and their technologies and brought Jobs back as CEO once again. However, Jobs’ path wasn’t unique, and the history of computing since then could’ve gone a whole lot different.

In 1990, Jean-Louis Gassée, who replaced Jobs in Apple as the head of Macintosh development, was also fired from the company. He then also formed his own computer company with the help of another ex-Apple employee, Steve Sakoman. They called it Be Inc, and their goal was to create a more modern operating system from scratch based on the object-oriented design of C++, using proprietary hardware that could allow for greater media capabilities unseen in personal computers at the time.

Continue reading “BeOS: The Alternate Universe’s Mac OS X”

Tony Brooker And Autocode – The First High-level Language

The field of computer science has undeniably changed the world for virtually every single person by now. Certainly for you as Hackaday reader, but also for everyone around you, whether they’re working in the field themselves, or are simply enjoying the fruits of convenience it bears. What was once a highly specialized niche field for a few chosen people has since grown into a discipline that not only created one of the biggest industry in modern times, but also revolutionized every other industry, some a few times over.

The fascinating part about all this is the relatively short time span it took to get here, and with that the privilege to live in an era where some of the pioneers and innovators, the proverbial giants whose shoulders every one of us is standing on, are still among us. Sadly, one of them, [Tony Brooker], a pioneer of the early programming language concept known as Autocode, passed away in November. Reaching the remarkable age of 94, the truly sad part however is that this might be the first time you hear his name, and there’s a fair chance you never heard of Autocode either.

But Autocode was probably the first high-level computer language, and as such played a fundamental role in the development of whatever you’re coding in today. So to honor the memory of [Tony Brooker], let’s remember the work he did with Autocode, and the leap in computer science history that it represented.

Continue reading “Tony Brooker And Autocode – The First High-level Language”