“AI, Make Me A Degree Certificate”

One of the fun things about writing for Hackaday is that it takes you to the places where our community hang out. I was in a hackerspace in a university town the other evening, busily chasing my end of month deadline as no doubt were my colleagues at the time too. In there were a couple of others, a member who’s an electronic engineering student at one of the local universities, and one of their friends from the same course. They were working on the hardware side of a group project, a web-connected device which with a team of several other students, and they were creating from sensor to server to screen.

I have a lot of respect for my friend’s engineering abilities, I won’t name them but they’ve done a bunch of really accomplished projects, and some of them have even been featured here by my colleagues. They are already a very competent engineer indeed, and when in time they receive the bit of paper to prove it, they will go far. The other student was immediately apparent as being cut from the same cloth, as people say in hackerspaces, “one of us”.

They were making great progress with the hardware and low-level software while they were there, but I was saddened at their lament over their colleagues. In particular it seemed they had a real problem with vibe coding: they estimated that only a small percentage of their classmates could code by hand as they did, and the result was a lot of impenetrable code that looked good, but often simply didn’t work.

I came away wondering not how AI could be used to generate such poor quality work, but how on earth this could be viewed as acceptable in a university.
Continue reading ““AI, Make Me A Degree Certificate””

Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time

When we talk about HDTV, we’re typically talking about any one of a number of standards from when television made the paradigm switch from analog to digital transmission. At the dawn of the new millenium, high-definition TV was a step-change for the medium, perhaps the biggest leap forward since color transmissions began in the middle of the 20th century.

However, a higher-resolution television format did indeed exist well before the TV world went digital. Over in Japan, television engineers had developed an analog HD format that promised quality far beyond regular old NTSC and PAL transmissions. All this, decades before flat screens and digital TV were ever seen in consumer households!

Continue reading “Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time”

Medieval Iron, Survivorship Bias And Modern Metallurgy

When you hear it said that “Modern steel is disposable by design”, your ears perk up, as you just caught the unmistakable sound of faux romanticism along with ‘lost ancient technology‘ vibes. Although it happens sometimes that we did lose something important, as with for example the ancient Roman concrete that turns out to have self-healing properties as a result of so-called hot mixing, this is decidedly an exception.

We nearly lost that technology because of the technological and scientific bonfire that was the prelude to a thousand years of darkness over Europe: called the Dark Ages, Middle Ages as well as the medieval period. Thus when you come across a slideshow video with synthesized monotonal voice-over which makes the bold claim that somehow medieval iron was superior and today’s metallurgy both worse and designed to break, you really have to do a spit-take. The many corrections in the comment section further reinforces the feeling that it’s more slop than fact.

One of the claims made is that the bloomery furnace beats the blast furnace, due to beneficial additives to the iron. Considering that the video cites its sources, it’s at least worthy of a dive into the actual science here. Are modern iron and steel truly that inferior and disposable?

Continue reading “Medieval Iron, Survivorship Bias And Modern Metallurgy”

Lithium-Ion Batteries: WHY They Demand Respect

This summer, we saw the WHY (What Hackers Yearn) event happen in Netherlands, of course, with a badge to match. Many badges these days embrace the QWERTY computer aesthetic, which I’m personally genuinely happy about. This one used 18650 batteries for power, in a dual parallel cell configuration… Oh snap, that’s my favourite LiIon cell in my favourite configuration, too! Surely, nothing bad could happen?

Whoops. That one almost caught me by surprise, I have to shamefully admit. I just genuinely love 18650 cells, in all glory they bring to hardware hacking, and my excitement must’ve blindsided me. They’re the closest possible entity to a “LiIon battery module”, surprisingly easy to find in most corners of this planet, cheap to acquire in large quantities, easy to interface to your projects, and packing a huge amount of power. It’s a perfect cell for many applications I and many other hackers hold dear.

Sadly, the 18650 cells were a bad choice for the WHY badge, for multiple reasons at once. If you’re considering building a 18650-based project, or even a product, let me show you what exactly made these cells a bad fit, and how you might be able to work around those limitations on your own journey. There’s plenty of technical factors, but I will tell you about the social factors, because these create the real dealbreaker here. Continue reading “Lithium-Ion Batteries: WHY They Demand Respect”

Reproduced And Recovered: The First Chinese Keyboard-based MingKwai Typewriter

We all know what a typewriter looks like, and how this has been translated directly into the modern day computer keyboard, or at least many of us think we do. Many cultures do not use a writing system like the Roman or Cyrillic-style alphabets, with the Chinese writing system probably posing the biggest challenge. During the rise of mechanical typewriters, Chinese versions looked massive, clumsy and slow as they had to manage so many different symbols. All of them, except for one prototype of the MingKwai, which a group of Chinese enthusiasts have recently built themselves using the patent drawings.

Interestingly, when they started their build, it was thought that every single prototype of the MingKwai had been lost to time. That was before a genuine prototype was found in a basement in New York and acquired by Stanford University Libraries, creating the unique experience of being able to compare both a genuine prototype and a functional recreation.

Considered to be the first Chinese typewriter with a keyboard, the MingKwai (明快打字機, for ‘clear and fast’) was developed by [Lin Yutang] in the 1940s. Rather than the simple mechanism of Western typewriters where one key is linked directly to one hammer, the MingKwai instead uses the keys as a retrieval, or indexing mechanism.

Different rows select a different radical from one of the multiple rolls inside the machine, with a preview of multiple potential characters that these can combine to. After looking at these previews in the ‘magic eye’ glass, you select the number of the target symbol. In the video by the Chinese team this can be seen in action.

Although [Lin]’s MingKwai typewriter did not reach commercialization, it offered the first glimpse of a viable Chinese input method prior to computer technology. These days the popular pinyin uses the romanized writing form, which makes it somewhat similar to the standard Japanese input method using its phonetic kana system of characters. Without such options and within the confined system of 1940s electromechanical systems, however, the MingKwai is both an absolute marvel of ingenuity, and absolutely mindboggling even by 2020s standards.

Continue reading “Reproduced And Recovered: The First Chinese Keyboard-based MingKwai Typewriter”

This Reactor Is On Fire! Literally…

If I mention nuclear reactor accidents, you’d probably think of Three Mile Island, Fukushima, or maybe Chernobyl (or, now, Chornobyl). But there have been others that, for whatever reason, aren’t as well publicized. Did you know there is an International Nuclear Event Scale? Like the Richter scale, but for nuclear events. A zero on the scale is a little oopsie. A seven is like Chernobyl or Fukushima, the only two such events at that scale so far. Three Mile Island and the event you’ll read about in this post were both level five events. That other level five event? The Windscale fire incident in October of 1957.

If you imagine this might have something to do with the Cold War, you are correct. It all started back in the 1940s. The British decided they needed a nuclear bomb project and started their version of the Manhattan Project called “Tube Alloys.” But in 1943, they decided to merge the project with the American program.

The British, rightfully so, saw themselves as co-creators of the first two atomic bombs. However, in post-World War paranoia, the United States shut down all cooperation on atomic secrets with the 1946 McMahon Act.

We Are Not Amused

The British were not amused and knew that to secure a future seat at the world table, it would need to develop its own nuclear capability, so it resurrected Tube Alloys. If you want a detour about the history of Britan’s bomb program, the BBC has a video for you that you can see below.

Continue reading “This Reactor Is On Fire! Literally…”

Expert Systems: The Dawn Of AI

We’ll be honest. If you had told us a few decades ago we’d teach computers to do what we want, it would work some of the time, and you wouldn’t really be able to explain or predict exactly what it was going to do, we’d have thought you were crazy. Why not just get a person? But the dream of AI goes back to the earliest days of computers or even further, if you count Samuel Butler’s letter from 1863 musing on machines evolving into life, a theme he would revisit in the 1872 book Erewhon.

Of course, early real-life AI was nothing like you wanted. Eliza seemed pretty conversational, but you could quickly confuse the program. Hexapawn learned how to play an extremely simplified version of chess, but you could just as easily teach it to lose.

But the real AI work that looked promising was the field of expert systems. Unlike our current AI friends, expert systems were highly predictable. Of course, like any computer program, they could be wrong, but if they were, you could figure out why.

Experts?

As the name implies, expert systems drew from human experts. In theory, a specialized person known as a “knowledge engineer” would work with a human expert to distill his or her knowledge down to an essential form that the computer could handle.

This could range from the simple to the fiendishly complex, and if you think it was hard to do well, you aren’t wrong. Before getting into details, an example will help you follow how it works.

Continue reading “Expert Systems: The Dawn Of AI”