Rulers Of The Ancient World — Literally!

If you were expecting a post about ancient kings and queens, you are probably at the wrong website. [Burn Heart] has a fascination with ancient measuring devices and set out to recreate period-correct rules, although using decidedly modern techniques.

The first example is a French rule for measuring the “pied du Roi” or king’s foot. Apparently, his royal highness had large feet as a the French variant is nearly 13 inches long. The next rulers hail from Egypt and measure cubits and spans. Turns out the pyramid builders left a lot of information about measurements and their understanding of math and tools like dividers.

Other rules from Rome, Japan, and the Indus Valley are also included. According to the post, one set of these rulers used locally sourced wood, but a second “limited” edition used wood that the originals might have. Most of the rulers were etched via CNC, although the French ruler was hand-etched.

The Romans, apparently, had smaller feet than French royalty, as their Pes or foot was about 11.65 inches. There are plenty of little tidbits in the post ranging from the origin of the word inch to why the black wood used for piano keys is called ebony.

We’ll stipulate this isn’t exactly a hack, although it is fine workmanship and part of hacker culture is obsessing over measuring things, so we thought it was fair game. These days, rulers are often electronic. Which makes it natural to put them on a PC board.

Embedded Python: MicroPython Is Amazing

In case you haven’t heard, about a month ago MicroPython has celebrated its 11th birthday. I was lucky that I was able to start hacking with it soon after pyboards have shipped – the first tech talk I remember giving was about MicroPython, and that talk was how I got into the hackerspace I subsequently spent years in. Since then, MicroPython been a staple in my projects, workshops, and hacking forays.

If you’re friends with Python or you’re willing to learn, you might just enjoy it a lot too. What’s more, MicroPython is an invaluable addition to a hacker’s toolkit, and I’d like to show you why. Continue reading “Embedded Python: MicroPython Is Amazing”

PCB Design Review: HAB Tracker With ATMega328P

Welcome to the Design Review Central! [VE3SVF] sends us their board, and it’s a HAB (High Altitude Balloon) tracker board. It’s got the venerable ATMega28P on it, a LoRa modem and a GPS module, and it can be powered from a LiIon battery. Stick this board with its battery onto a high-altitude balloon, have it wake up and transmit your coordinates every once in a while, and eventually you’ll find it in a field – if you’re lucky. Oherwise, it will get stuck hanging on a tree branch, and you will have to use a quadcopter to try and get it down, and then, in all likelihood, a second quadcopter so that you can free the first one. Or go get a long ladder.

The ATMega328P is tried and true, and while it’s been rising in price, it’s still available – with even an updated version that sports a few more peripherals; most importantly, you’re sure to find a 328P in your drawer, if not multiple. Apart from that, the board uses two modules from a Chinese manufacturer, G-Nice, for both GPS and Lora. Both of these modules are cheap, making this tracker all that more accessible; I could easily see this project being sold as a “build your own beacon” kit!

Let’s make it maybe a little nicer, maybe a little cheaper, and maybe decrease the power consumption a tad along the way. We’ll use some of the old tricks, a few new ones, and talk about project-specific aspects that might be easy to miss.

Continue reading “PCB Design Review: HAB Tracker With ATMega328P”

Solar Dynamics Observatory: Our Solar Early Warning System

Ever since the beginning of the Space Age, the inner planets and the Earth-Moon system have received the lion’s share of attention. That makes sense; it’s a whole lot easier to get to the Moon, or even to Mars, than it is to get to Saturn or Neptune. And so our probes have mostly plied the relatively cozy confines inside the asteroid belt, visiting every world within them and sometimes landing on the surface and making a few holes or even leaving some footprints.

But there’s still one place within this warm and familiar neighborhood that remains mysterious and relatively unvisited: the Sun. That seems strange, since our star is the source of all energy for our world and the system in general, and its constant emissions across the electromagnetic spectrum and its occasional physical outbursts are literally a matter of life and death for us. When the Sun sneezes, we can get sick, and it has the potential to be far worse than just a cold.

While we’ve had a succession of satellites over the last decades that have specialized in watching the Sun, it’s not the easiest celestial body to observe. Most spacecraft go to great lengths to avoid the Sun’s abuse, and building anything to withstand the lashing our star can dish out is a tough task. But there’s one satellite that takes everything that the Sun dishes out and turns it into a near-constant stream of high-quality data, and it’s been doing it for almost 15 years now. The Solar Dynamics Observatory, or SDO, has also provided stunning images of the Sun, like this CGI-like sequence of a failed solar eruption. Images like that have captured imaginations during this surprisingly active solar cycle, and emphasized the importance of SDO in our solar early warning system.

Continue reading “Solar Dynamics Observatory: Our Solar Early Warning System”

The Flash Memory Lifespan Question: Why QLC May Be NAND Flash’s Swan Song

The late 1990s saw the widespread introduction of solid-state storage based around NAND Flash. Ranging from memory cards for portable devices to storage for desktops and laptops, the data storage future was prophesied to rid us of the shackles of magnetic storage that had held us down until then. As solid-state drives (SSDs) took off in the consumer market, there were those who confidently knew that before long everyone would be using SSDs and hard-disk drives (HDDs) would be relegated to the dust bin of history as the price per gigabyte and general performance of SSDs would just be too competitive.

Fast-forward a number of years, and we are now in a timeline where people are modifying SSDs to have less storage space, just so that their performance and lifespan are less terrible. The reason for this is that by now NAND Flash has hit a number of limits that prevent it from further scaling density-wise, mostly in terms of its feature size. Workarounds include stacking more layers on top of each other (3D NAND) and increasing the number of voltage levels – and thus bits – within an individual cell. Although this has boosted the storage capacity, the transition from single-level cell (SLC) to multi-level (MLC) and today’s TLC and QLC NAND Flash have come at severe penalties, mostly in the form of limited write cycles and much reduced transfer speeds.

So how did we get here, and is there life beyond QLC NAND Flash?

Continue reading “The Flash Memory Lifespan Question: Why QLC May Be NAND Flash’s Swan Song”

Dad? Where Did Printed Circuit Boards Come From?

These days, it is hard to imagine electronics without printed circuit boards. They are literally in everything. While making PCBs at home used to be a chore, these days, you design on a computer, click a button, and they show up in the mail. But if you go back far enough, there were no PC boards. Where did they come from? That’s the question posed by [Steven Leibson] who did some investigating into the topic.

There were many false starts at building things like PCBs using wires glued to substrates or conductive inks.  However, it wasn’t until World War II that mass production of PC boards became common. In particular, they were the perfect solution for proximity fuzes in artillery shells.

Continue reading “Dad? Where Did Printed Circuit Boards Come From?”

A Look Back At The USSR’s Mi-6 Helicopter Airliner

Most of us would equate commercial airline travel with fixed-wing aircraft, but civilian transport by helicopter, especially in large and sparsely populated regions, is common enough. It was once even big business in the Soviet Union, where the Aeroflot airline operated passenger helicopters in regular service for many decades. In the mid-1960s they even started work on converting the Mil Mi-6 — the USSR’s largest and fastest helicopter — to carry paying passengers. Unfortunately this never got past a single prototype, with the circumstances described by [Oliver Parken] in a recent article.

This passenger version of the Mi-6 got the designation Mi-6P (for passazhirskyi, meaning passenger) and would have seated up to 80 (3 + 2 row configuration), compared to the Mi-8 passenger variant that carried 28 – 31 passengers. Why exactly the Mi-6P never got past the prototype stage is unknown, but its successor in the form of the Mi-26P has a listed passenger variant and features. Both have a cruising speed of around 250 km/h, with a top of 300 km/h. The auxiliary winglets of the Mi-6 provided additional lift during flight, and the weight lifting record set by the Mi-6 was only broken by the Mi-26 in 1982.

An obvious disadvantage of passenger helicopters is that they are more complicated to operate and maintain, while small fixed wing airliners like the ATR 72 (introduced in 1988) can carry about as many passengers, requires just a strip of tarmac to land and take off from, travel about twice as fast as an Mi-6P would, and do not require two helicopter pilots to fly them. Unless the ability to hover and land or take-off vertically are required, this pretty much explains why passenger helicopters are such a niche application. Not that the Mi-6P doesn’t have that certain je ne sais quoi to it, mind.