The Famous Computer Cafe Has Now Been Archived Online

You might think that TV stations or production houses would be great at archiving, but it’s not always the case. Particularly from the public access perspective. However, if you’re a fan of The Famous Computer Cafe, you’re in luck! The beloved series has now been preserved on The Internet Archive!

If you’re not familiar with the show, it was a radio program broadcast from 1983 to 1986. It was pumped out of a variety of radio stations in southern and central California in the period. The creators making sure to keep a copy of each episode in reel-to-reel tape format. For years, these tapes were tragically lost, until archivist [Kay Savetz] was able to recover some of them from a recent property sale. From there, a GoFundMe paid for digitization, and the show has been placed on The Internet Archive with the blessings of the original creators.

This is quite the cultural victory, particularly when you observe the list of guests on the show. Timothy Leary, Bill Gates, Jack Tramiel, and even Douglas Adams made appearances in the recovered recordings. Sadly, though, not all the tapes have been recovered. Episodes with Gene Roddenberry, Robert Moog, and Ray Bradbury are still lost to time.

If you fancy a listen, 53 episodes presently exist on the archive. Take a trip back in time and hear from some technological visionaries—and futurists—speaking their minds at the very beginning of the microcomputer era! If you find any particularly salient gems, don’t hesitate to drop them on the tip line.

A Field Guide To The North American Substation

Drive along nearly any major road in the United States and it won’t be long before you see evidence of the electrical grid. Whether it’s wooden poles strung along the right of way or a line of transmission towers marching across the countryside in the distance, signs of the grid are never far from view but often go ignored, blending into the infrastructure background and becoming one with the noise of our built environment.

But there’s one part of the electrical grid that, despite being more widely distributed and often relegated to locations off the beaten path, is hard to ignore. It’s the electrical substation, more than 55,000 of which dot the landscape of the US alone. They’re part of a continent-spanning machine that operates as one to move electricity from where it’s produced to where it’s consumed, all within the same instant of time. These monuments of galvanized steel are filled with strange, humming equipment of inscrutable purpose, seemingly operating without direct human intervention. But if you look carefully, there’s a lot of fascinating engineering going on behind those chain-link fences with the forbidding signage, and the arrangement of equipment within them tells an interesting story about how the electrical grid works, and what the consequences are when it doesn’t.

Continue reading “A Field Guide To The North American Substation”

Tech In Plain Sight: Speedometers

In a modern car, your speedometer might look analog, but it is almost certainly digital and driven by the computer that has to monitor all sorts of things anyway. But how did they work before your car was a rolling computer complex? The electronic speedometer has been around for well over a century and, when you think about it, qualifies as a technlogical marvel.

If you already know how they work, this isn’t a fair question. But if you don’t, think about this. Your dashboard has a cable running into it. The inner part of the cable spins at some rate, which is related to either the car’s transmission or a wheel sensor. How do you make a needle deflect based on the speed?

Continue reading “Tech In Plain Sight: Speedometers”

565RU1 die manufactured in 1981.

The First Mass Produced DRAM Of The Soviet Union

KE565RU1A (1985) in comparison with the analogue from AMD (1980)
KE565RU1A (1985) in comparison with the analogue from AMD (1980)

Although the benefits of semiconductor technology were undeniable during the second half the 20th century, there was a clear divide between the two sides of the Iron Curtain. Whilst the First World had access to top-of-the-line semiconductor foundries and engineers, the Second World was having to get by with scraps. Unable to keep up with the frantic pace of the USA’s developments in particular, the USSR saw itself reduced to copying Western designs and smuggling in machinery where possible. A good example of this is the USSR’s first mass-produced dynamic RAM (DRAM), the 565RU1, as detailed by [The CPUShack Museum].

While the West’s first commercially mass-produced DRAM began in 1970 with the Intel 1103 (1024 x 1) with its three-transistor design, the 565RU1 was developed in 1975, with engineering samples produced until the autumn of 1977. This DRAM chip featured a three-transistor design, with a 4096 x 1 layout and characteristics reminiscent of Western DRAM ICs like the Ti TMS4060. It was produced at a range of microelectronics enterprises in the USSR. These included Angstrem, Mezon (Moldova), Alpha (Latvia) and Exciton (Moscow).

Of course, by the second half of the 1970s the West had already moved on to single-transistor, more efficient DRAM designs. Although the 565RU1 was never known for being that great, it was nevertheless used throughout the USSR and Second World. One example of this is a 1985 article (page 2) by [V. Ye. Beloshevskiy], the Electronics Department Chief of the Belorussian Railroad Computer Center in which the unreliability of the 565RU1 ICs are described, and ways to add redundancy to the (YeS1035) computing systems.

Top image: 565RU1 die manufactured in 1981.

Australia Didn’t Invent WiFi, Despite What You’ve Heard

Wireless networking is all-pervasive in our modern lives. Wi-Fi technology lives in our smartphones, our laptops, and even our watches. Internet is available to be plucked out of the air in virtually every home across the country. Wi-Fi has been one of the grand computing revolutions of the past few decades.

It might surprise you to know that Australia proudly claims the invention of Wi-Fi as its own. It had good reason to, as well— given the money that would surely be due to the creators of the technology. However, dig deeper, and you’ll find things are altogether more complex.

Continue reading “Australia Didn’t Invent WiFi, Despite What You’ve Heard”

40,000 FPS Omega camera captures Olympic photo-finish

Olympic Sprint Decided By 40,000 FPS Photo Finish

Advanced technology played a crucial role in determining the winner of the men’s 100-meter final at the Paris 2024 Olympics. In a historically close race, American sprinter Noah Lyles narrowly edged out Jamaica’s Kishane Thompson by just five-thousandths of a second. The final decision relied on an image captured by an Omega photo finish camera that shoots an astonishing 40,000 frames per second.

This cutting-edge technology, originally reported by PetaPixel, ensured the accuracy of the result in a race where both athletes recorded a time of 9.78 seconds. If SmartThings’ shot pourer from the 2012 Olympics were still around, it could once again fulfill its intended role of celebrating US medals.

Omega, the Olympics’ official timekeeper for decades, has continually innovated to enhance performance measurement. The Omega Scan ‘O’ Vision Ultimate, the camera used for this photo finish, is a significant upgrade from its 10,000 frames per second predecessor. The new system captures four times as many frames per second and offers higher resolution, providing a detailed view of the moment each runner’s torso touches the finish line. This level of detail was crucial in determining that Lyles’ torso touched the line first, securing his gold medal.

This camera is part of Omega’s broader technological advancements for the Paris 2024 Olympics, which include advanced Computer Vision systems utilizing AI and high-definition cameras to track athletes in real-time. For a closer look at how technology decided this historic race, watch the video by Eurosport that captured the event.

Continue reading “Olympic Sprint Decided By 40,000 FPS Photo Finish”

For years, the first Air Force One sat neglected and forgotten in an open field at Arizona’s Marana Regional Airport. (Credit: Dynamic Aviation)

The First Air Force One And How It Was Nearly Lost Forever

Although the designation ‘Air Force One’ is now commonly known to refer to the airplane used by the President of the United States, it wasn’t until Eisenhower that the US President would make significant use of a dedicated airplane. He would have a Lockheed VC-121A kitted out to act as his office as commander-in-chief. Called the Columbine II after the Colorado columbine flower, it served a crucial role during the Korean War and would result the coining of the ‘Air Force One’ designation following a near-disaster in 1954.

This involved a mix-up between Eastern Air Lines 8610 and Air Force 8610 (the VC-121A). After the Columbine II was replaced with a VC-121E model (Columbine III), the Columbine II was mistakenly sold to a private owner, and got pretty close to being scrapped.

In 2016, the plane made a “somewhat scary and extremely precarious” 2,000-plus-mile journey to Bridgewater, Virginia, to undergo a complete restoration. (Credit: Dynamic Aviation)
In 2016, the plane made a “somewhat scary and extremely precarious” 2,000-plus-mile journey to Bridgewater, Virginia, to undergo a complete restoration. (Credit: Dynamic Aviation)

Although nobody is really sure how this mistake happened, it resulted in the private owner stripping the airplane for parts to keep other Lockheed C-121s and compatible airplanes flying. Shortly before scrapping the airplane, he received a call from the Smithsonian Institution, informing him that this particular airplane was Eisenhower’s first presidential airplane and the first ever Air Force One. This led to him instead fixing up the airplane and trying to sell it off. Ultimately the CEO of the airplane maintenance company Dynamic Aviation, [Karl D. Stoltzfus] bought the partially restored airplane after it had spent another few years baking in the unrelenting sun.

Although in a sorry state at this point, [Stoltzfus] put a team led by mechanic [Brian Miklos] to work who got the airplane in a flying condition by 2016 after a year of work, so that they could fly the airplane over to Dynamic Aviation facilities for a complete restoration. At this point the ‘nuts and bolts’ restoration is mostly complete after a lot of improvisation and manufacturing of parts for the 80 year old airplane, with restoration of the Eisenhower-era interior and exterior now in progress. This should take another few years and another $12 million or so, but would result in a fully restored and flight-worthy Columbine II, exactly as it would have looked in 1953, plus a few modern-day safety upgrades.

Although [Stoltzfus] recently passed away unexpectedly before being able to see the final result, his legacy will live on in the restored airplane, which will after so many years be able to meet up again with the Columbine III, which is on display at the National Museum of the USAF.