Cyclist Pulled Over For Headphones Builds Neighborhood Shaking Bicycle Boombox

Riding around with headphones on is not the safest of things; those people are trying to could hit you! [Victor Frost] was actually pulled over for doing it. Although the bicycle police didn’t ticket him, they did push him over the edge to pursuing a compromise that lets him listen to tunes and perhaps still hear the traffic around him.

The build puts 200 Watts of audio on his rear luggage rack. He used a couple of file totes as enclosures, bolting them in place and cutting one hole in each to receive the pair of speakers. The system is powered by two 6V sealed lead-acid batteries which are topped off by a trickle-charger when the bike is parked.

Looking through this log we almost clicked right past this one. It wasn’t immediately apparent that this is actually version four of the build, and these are completely different spins each time. The top-down view of plastic-tacklebox-wrapped-v3 is sure to make you grin. Video overviews of the first two versions are linked in [Victor’s] details section of the project page linked at the top of this post. The progress is admirable and fun time digging through. They’re all quite a bit different but bigger, better, and more self-contained with each iteration.

Okay, okay, maybe this isn’t going to shake the neighborhood… until he adds a Bass Cannon to it.

Logic Noise: More CMOS Cowbell!

Logic Noise is an exploration of building raw synthesizers with CMOS logic chips. This session, we’ll tackle things like bells, gongs, cymbals and yes, cowbells that have a high degree of non-harmonically related content in them.

Metallic Sounds: The XOR

I use the term “Non-harmonic” in the sense that the frequencies that compose the sound aren’t even integer multiples of some fundamental pitch as is the case with a guitar string or even our square waves. To make these metallic sounds, we’re going to need to mess things up a little bit, and the logic function we’re introducing today to do it is the exclusive-or (XOR).

Continue reading “Logic Noise: More CMOS Cowbell!”

bluetooth snes headphones

SNES Headphones Cry For Bluetooth Has Been Answered

A year and a half ago we ran a post about a SNES controller modified into a pair of headphones. They were certainly nice looking and creative headphones but the buttons, although present, were not functional. The title of the original post was (maybe antagonistically) called: ‘SNES Headphones Scream Out For Bluetooth Control‘.

Well, headphone modder [lyberty5] is back with a vengeance. He has heeded the call by building revision 2 of his SNES headphones… and guess what, they are indeed Bluetooth! Not only that, the A, B, X and Y buttons are functional this time around and have been wired up to the controls on the donor Bluetooth module.

To get this project started, the SNES controller was taken apart and the plastic housing was cut up to separate the two rounded sides. A cardboard form was glued in place so that epoxy putty could be roughly formed in order to make each part completely round. Once cured, the putty was sanded and imperfections filled with auto body filler. Holes were drilled for mounting to the headband and a slot was made for the Bluetooth modules’ USB port so the headphone can be charged. The headphones were then reassembled after a quick coat of paint in Nintendo Grey. We must say that these things look great.

If you’d like to make your own set of SNES Bluetooth Headphones, check out the build video after the break.

Continue reading “SNES Headphones Cry For Bluetooth Has Been Answered”

Logic Noise: Filters And Drums

Filters and Drums

Logic Noise is an exploration of building raw synthesizers with CMOS logic chips. This session, we continue to abuse the 4069UB as an amplifier. We’ll turn the simple unity-gain buffer of last session into a single-pole active lowpass filter with a single part. (Spoiler: it’s a capacitor.)

While totally useful, this simple filter is a bit boring and difficult to make dynamic. So we’ll look into an entirely different filter, the Twin-T notch filter, that turns out to be sharp enough to build a sine-wave oscillator on, and tweakable enough that we’ll make a damped-oscillator drum sound out of it.

Here’s a quick demo of where we’re heading. Read on to see how we get there.

Continue reading “Logic Noise: Filters And Drums”

Auto-sleep Hacked In PC Speakers

We can commiserate with [HardwareCoder] who would rather not leave his PC speakers on all the time. The Creative T20 set that he uses turn off when you turn the volume knob all the way down until it clicks. So shutting them off means repositioning the volume each time they’re switched on again. This hack kills two birds with one stone by turning on and off automatically without touching that knob.

The system is based around an ATtiny45 and a few other simple components. It uses two ADCs to monitor the rear input channels of the PC speakers. If no sound is detected for more than one minute, the shutdown pin of the speakers’ amp chip is triggered. That’s not quite where the hack ends. We mentioned it monitors the rear input of the speakers, but it doesn’t monitor the front AUX input. An additional push button is used to disable the auto-sleep when using this front input. There is also a fancy PWM-based heartbeat on an LED when the speakers are sleeping.

[HardwareCoder] was worried that we wouldn’t be interested in this since it’s quite similar to a hack we ran a few years ago. We hope you’ll agree it’s worth another look. He also warned us that the demo video was boring. We watched it all anyway and can confirm that there’s not much action there but we embedded it below anyway.

Continue reading “Auto-sleep Hacked In PC Speakers”

Logic Noise: Sawing Away With Analog Waveforms

Today we’ll take a journey into less noisy noise, and leave behind the comfortable digital world that we’ve been living in. The payoff? Smoother sounds, because today we start our trip into analog.

If you remember back to our first session when I was explaining how the basic oscillator loads and unloads a capacitor, triggering the output high or low when it crosses two different thresholds. At the time, we pointed out that there was a triangle waveform being generated, but that you’d have a hard time amplifying it without buffering. Today we buffer, and get that triangle wave out to our amplifiers.

triangle_square

But as long as we’re amplifying, we might as well overdrive the amps and head off to the land of distortion. We’ll do just that and build up a triangle-wave oscillator that can morph into a square wave, passing through a rounded-over kinda square wave along the way. The triangle sounds nice and mellow, and the square wave sounds bright and noisy. (You should be used to them by now…) And we get everything in between.

And while we’re at it, we might as well turn the triangle wave into a sawtooth for that nice buzzy-bass sound. Then we can turn the fat sawtooth into a much brighter sounding pulse wave, a near cousin of the square wave above.

What’s making all this work for us? Some dead-boring amplification with negative feedback, and the (mis-)use of a logic chip to get it. After the break I’ll introduce our Chip of the Day: the 4069UB.

If you somehow missed them, here are the first three installments of Logic Noise:

Continue reading “Logic Noise: Sawing Away With Analog Waveforms”

Speaker out of a hard drive

Hard Drive… Speakers?

Speakers really aren’t that complex to make. In fact, if you’re clever about it, you can make a speaker out of just about anything. [Afroman] is kicking it old school with a hack he first did back in 2001, but now, in video form: Make your own HDD Speaker!

All you need is an old hard drive you don’t care about anymore, a bit of flexible wire, and an externally powered amplifier (no your cellphone will not work!). If you don’t have an amp, [Afroman] even has a tutorial so you can build your own Class D Amplifier on a breadboard!

First off you’ll need to crack open the HDD enclosure. You might need a torx or hex key to get past the manufacturer’s “safety screws” though. Once it’s open you’ll need to locate the hard drive head — this is the small metal arm that looks kind of like a record player tone arm. It’s actually controlled by a coil, you know, just like a speaker…

Continue reading “Hard Drive… Speakers?”