Rainwater From The Road To The Garden

Most small-scale, residential rainwater harvesting systems we’ve seen rely on using an existing roof and downspout to collect water that would otherwise be diverted out into the environment. These are accessible for most homeowners since almost all of the infrastructure needed for it is already in place. [SuburbanBiology] already built one of these systems to take care of his potable water, though, and despite its 30,000 gallon capacity it’s not even close to big enough to also water his garden. But with some clever grading around his yard and a special rainwater system that harvests rain from the street instead of his roof, he’s capable of maintaining a lush food forest despite living through a drought in Texas.

For this build there are actually two systems demonstrated, one which is gravity-fed from the road and relies on one’s entire property sloping away from the street, and a slightly more complex one that’s more independent of elevation. Both start with cutting through a section of sidewalk to pass a 4″ PVC pipe through to the street where the stormwater runoff can be collected. The gravity-fed system simply diverts this into a series of trenches around the property while the second system uses a custom sump pump to deliver the water to the landscaping.

For a system like this a holding tank is not necessary; [SuburbanBiology] is relying on the soil on his property itself to hold onto the rainwater. Healthy, living soil can hold a tremendous amount of water for a very long time, slowly releasing it to plants when they need it. And, at least where he lives, a system like this is actually helpful for the surrounding environment as a whole since otherwise all of the stormwater runoff has to be diverted out of the city or cause a flood, and it doesn’t end up back in an aquifer. If you’re more curious about a potable water system instead, take a look at [SuburbanBiology]’s previous system.

Continue reading “Rainwater From The Road To The Garden”

Stylized silver text with the the word: "arpa-e" over the further text: "Changing What's Possible"

Uncle Sam Wants You To Recover Energy Materials From Wastewater

The U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) was founded to support moonshot projects in the realm of energy, with a portfolio that ranges from the edge of current capabilities to some pretty far out stuff. We’re not sure exactly where their newest “Notice of Funding Opportunity (NOFO)” falls, but they’re looking for critical materials from the wastewater treatment process. [via CleanTechnica]

As a refresher, critical materials are those things that are bottlenecks in a supply chain that you don’t want to be sourcing from unfriendly regions. For the electrification of transportation and industrial processes required to lower carbon emissions, lithium, cobalt, and other rare earth elements are pretty high on the list.

ARPA-E also has an interest in ammonia-based products which is particularly interesting as industrial fertilizers can wreak havoc on natural ecosystems when they become run off instead of making it into the soil. As any farmer knows, inputs cost money, so finding an economical way to recover those products from wastewater would be a win-win. “For all categories, the final recovered products will need to include at least two targeted high energy-value materials, have greater than 90% recovery efficiency, and be commercially viable in the U.S. market.” If that sounds like the sort of thing you’d like to try hacking on, consider filling out an Applicant Profile.

If you’re curious about where we’re getting some of these materials from right now, checkout our series on Mining and Refining, including the lithium and cobalt ARPA-E wants more of.

The Many Reasons For Putting Microphones In Rainforests

If a tree falls in a forest with nobody around, does it make a noise? In the case of the rainforests equipped with the Rainforest Connection’s Guardian system someone most assuredly will.

Rainforest Connection’s Guardian system up close, with microphone visible. (Credit: RFCx)

Originally created by the people behind the US nonprofit Rainforest Connection (RFCx) using upcycled smartphones to detect the sounds of illegal logging, their project now has grown into something much larger, keeping not only tabs on sounds of illegal activity, but also performing bioacoustic monitoring for scientific purposes.

Currently active in ten countries, the so-called Guardian Platform no longer features smartphones, but custom hardware inside an IP66 weatherproof enclosure and a whole range of communication options, ranging from cellular bands to satellite communications. The petal-shaped solar panels provide the module with up to 30 watts of power, and double as a shield to help protect it from the elements.

Not only is the real-time microphone data incredibly useful for rangers trying to stop illegal logging, it also provides researchers access to countless hours of audio data, which will require detailed, automated analysis. Even better is that if the audio data is available to the general public as well, via their Android & iOS apps (bottom of page), just in case you wanted to hear what that sneaky wildlife in the jungle of Peru is up to right now.

A researcher in a safety harness pollinates an American chestnut tree from a lift. Another researcher is on the other side of the lift and appears to be taking notes. The tree has bags over some of its branches, presumably to control the pollen that gets in. The lift has a grey platform and orange arm.

Hacking Trees To Bring Back The American Chestnut

“Chestnuts Roasting on an Open Fire” is playing on the radio now in the Northern Hemisphere which begs the question, “What happened to the American chestnut?” Would you be surprised to hear there’s a group dedicated to bringing it back from “functional extinction?” [via Inhabitat]

Between logging and the introduction of chestnut blight, the once prevalent American chestnut became increasingly uncommon throughout its traditional range in the Appalachians. While many trees in the southern range were killed by Phytophthora root rot (PRR), the chestnut blight leaves roots intact, so many chestnuts have been surviving by growing back from the roots only to succumb to the blight and be reborn again. Now, scientists are using a combination of techniques to develop blight-resistant trees from this remaining population.

The American Chestnut Foundation recognizes you can’t improve what you can’t measure and uses a combination of “small stem assays (SSAs) performed on potted seedlings, improved phenotype scoring methods for field-grown trees, and the use of genomic prediction models for scoring resistance based on genotype.” This allows them to more rapidly screen varieties for blight resistance to further their efforts. One approach is based on conventional plant breeding techniques and has been crossing blight and PRR-resistant Chinese chestnuts with the American type. PRR resistance has been found to be less genetically complicated, so progress has been faster on resistance to that particular problem. Continue reading “Hacking Trees To Bring Back The American Chestnut”

Waves crash near a rocky shore. Large, SUV-sized blue "floaters" sit in the water perpendicular to a concrete pier. The floaters look somewhat like a bass boat shrink wrapped in dark blue plastic and attached to a large piston and hinge. A grey SUV sits on the pier, almost as if for scale.

US Is Getting Its First Onshore Wave Power Plant

Renewables let you have a more diverse set of energy inputs so you aren’t putting all your generation eggs in one basket. One type of renewable that doesn’t see a lot of love, despite 80% of the world’s population living within 100 km (~60 mi) of a coastline, is harnessing the energy of the tides. [via Electrek]

“The U.S. Department of Energy’s National Renewable Energy Laboratory estimates that wave energy has the potential to generate over 1,400 terawatt-hours per year,” so while this initial project won’t be huge, the overall possible power generation from tidal power is nothing to sneeze at. Known more for its role in shipping fossil fuels, the Port of Los Angeles will host the new wave power pilot being built by Eco Wave Power and Shell. Eco Wave’s system uses floaters to drive pistons that compress hydraulic fluid and turn a generator before the decompressed fluid is returned to the pistons in a nice, tidy loop.

Eco Wave plans to finish construction by early 2025 and already has the power conversion unit onsite at the Port of Los Angeles. While the press release is mum on the planned install capacity, Eco Wave claims they will soon have 404.7 MW of installed capacity through several different pilot projects around the world.

We covered another Swedish company trying to harness tidal power with underwater kites, and if wave power isn’t your thing but you still like mixing water and electricity, why not try offshore wind or a floating solar farm? Just make sure to keep the noise down!

Hacking The Soil To Combat Desertification

While the Sahara Desert is an important ecosystem in its own right, its human neighbors in the Sahel would like it to stop encroaching on their environment. [Andrew Millison] took a look at how the people in the region are using “half moons” and zai pits to fight desertification.

With assistance from the World Food Program, people in Niger and all throughout the Sahel have been working on restoring damaged landscapes using traditional techniques that capture water during the rainy season to restore the local aquifer. The water goes to plants which provide forage during the 9 drier months of the year.

The main trick is using pits and contouring of the soil to catch rain as it falls. Give the ground time to absorb the water instead of letting it run off. Not only does this restore the aquifers, it also reduces flooding during during the intense rain events in the area. With the water constrained, plants have time to develop, and a virtuous cycle of growth and water retention allows people to have a more pleasant microclimate as well as enhanced food security. In the last five years, 500,000 people in Niger no longer need long-term food assistance as a result of these resiliency projects.

If this seems familiar, we previously covered the Great Green Wall at a more macro level. While we’re restoring the environment with green infrastructure, can we plant a trillion trees?

Continue reading “Hacking The Soil To Combat Desertification”

Enhiker Helps You Decide If Its A Good Day To Hike

Many of us check the weather before heading out for the day — we want to know if we’re dressed (or equipped) properly to handle what Mother Nature has planned for us. This is even more important if you’re going out hiking, because you’re going to be out in a more rugged environment. To aid in this regard, [Mukesh Sankhla] built a tool called Enhiker.

The concept is simple; it’s intended to tell you everything you need to know about current and pending conditions before heading out on a hike. It’s based around Unihiker, a single-board computer which also conveniently features a 2.8-inch touch screen. It’s a quad-core ARM device that runs Debian and has WiFi and Bluetooth built in, too. The device is able to query its GPS/GNSS receiver for location information, and then uses this to get accurate weather data online from OpenWeatherMap. It makes some basic analysis, too. For example, it can tell you if it’s a good time to go out, or if there’s a storm likely rolling in, or if the conditions are hot enough to make heat stroke a concern.

It’s a nifty little gadget, and it’s neat to have all the relevant information displayed on one compact device. We’d love to see it upgraded further with cellular connectivity in addition to WiFi; this would make it more capable when out and about.

We’ve seen some other neat hiking hacks before, too, like this antenna built with a hiking pole. Meanwhile, if you’ve got your own neat hacks for when you’re out on the trail, don’t hesitate to let us know!