Making Effective, Affordable Water Level Monitors

Water wells are simple things, but that doesn’t mean they are maintenance-free. It can be important to monitor water levels in a well, and that gets complicated when the well is remote. Commercial solutions exist, of course, but tend to be expensive and even impractical in some cases. That’s where [Hans Gaensbauer]’s low-cost, buoyancy-based well monitor comes in. An Engineers Without Border project, it not only cleverly measures water level in a simple way — logging to a text file on a USB stick in the process — but it’s so low-power that a single battery can run it for years.

The steel cable (bottom left) is attached to a submerged length of pipe, and inside the cylinder is a custom load cell. The lower the water level, the higher the apparent weight of the submerged pipe.

The monitor [Hans] designed works in the following way: suspend a length of pipe inside the well, and attach that pipe to a load cell. The apparent weight of the pipe will be directly proportional to how much of the pipe is above water. The fuller the well, the less the pipe will seem to weigh. It’s very clever, requires nothing to be in the well that isn’t already water-safe, and was designed so that the electronics sit outside in a weatherproof enclosure. Cost comes out to about $25 each, which compares pretty favorably to the $1000+ range of industrial sensors.

The concept is clever, but it took more that that to create a workable solution. For one thing, space was an issue. The entire well cap was only six inches in diameter, most of which was already occupied. [Hans] figured he had only about an inch to work with, but he made it work by designing a custom load cell out of a piece of aluminum with four strain gauges bonded to it. The resulting sensor is narrow, and sits within a nylon and PTFE tube that mounts vertically to the top of the well cap. Out from the bottom comes a steel cable that attaches to the submerged tube, and out the top comes a cable that brings the signals to the rest of the electronics in a separate enclosure. More details on the well monitor are in the project’s GitHub repository.

All one has to do after it’s installed is swap out the USB stick to retrieve readings, and every once in a long while change the battery. It sure beats taking manual sensor readings constantly, like meteorologists did back in WWII.

Electronic headstones. The first with an image of a circular lamp on a table. Text reads: "Halo Rise, Amazon, September 2022-August 2023, 0.9 years, Stopped offering cloud support (quick death)" Second is an image of a disassembled countertop appliance. Text reads: "Juicer, Juicero, March 2016-September 2017, 1.3 years, Change in business model/financial reasons" Third is an image of a black TV remote with the text: "Harmony Express, Logitech, April 2019-September 2020, 1.4 years, Stopped offering cloud support (quick death)"

Electronic Waste Graveyard Immortalizes Dead Electronics

Everyone here can think of a cloud-connected product that was killed because the company that made it stopped supporting it. While these corporations have forgotten their products, the US PIRG Education Fund has immortalized them in their Electronic Waste Graveyard.

With an estimated “130,000,000 pounds of electronic waste” produced since 2014, the amount of wasted resources is staggering. The advent of the cloud promised us reduced waste as lightweight devices could rely on remote brains to keep the upgrades going long after a traditional device would have been unable to keep up. The opposite seems to have occurred, wreaking havoc on the environment and pocketbooks.

Of course, we can count on hackers to circumvent the end of companies or services, but while that gives us plenty of fodder for projects, it isn’t so great for the normal folks who make up the rest of the population. We appreciate PIRG giving such a visceral reminder of the cost of business-as-usual for those who aren’t always thinking about material usage and waste.

If PIRG sounds familiar, they’re one of the many groups keeping an eye on Right-to-Repair legislation. We’ve been keeping an eye on it too with places like the EU, Texas, and Washington moving the ball forward on reducing e-waste and keeping devices running longer.

DIY, Full-Stack Farm Automation

Recently, [Vinnie] aka [vinthewrench] moved from Oregon to Arkansas to start a farmstead. This is a style of farming that focuses not just on a profitable farm where produce is sold at market, but also on a homestead where much of one’s own food is grown on the farm as well. Like any farm, though, it’s extremely hard work that takes a tremendous amount of time. Automation and other technology can make a huge impact in these situations, and [Vinnie] is rolling out his own software stack to help with this on his farm.

He calls his project the Pi Internet of Things, or PioT, and as its name suggests is based around the Raspberry Pi. Since this will all be outdoors and exposed to the extremes of Arkansas weather, everything built under the auspices of this project prioritizes ruggedness, stability, and long-term support, all while avoiding any cloud service. The system also focuses on being able to ride through power outages. The server side, called piotserver, uses a REST API to give the user access to the automation systems through a web interface

[Vinnie] also goes into detail about why existing systems like Home Assistant and Open Sprinkler wouldn’t work in his situation, and why a ground-up solution like this is more appropriate for his farm. This post is largely an overview of his system, but some of his other posts go into more detail about things like integrating temperature sensors, rainfall monitoring, controlling irrigation systems, and plenty of other farm automation tasks that are useful for any farmer or gardener.

We’ve also seen some other projects of his here like this project which converts a common AC sprinkler system to an easier-to-use DC system, and a DIY weather station that operates in the 915 MHz band. He’s been a great resource for anyone looking to have technology help them out with their farm or garden, but if you’re just getting started on your green thumb be sure to take a look at this starter guide as well.

The Many Questions And Challenges With DIY Hydroelectric Generators

The concept of building your own hydroelectric generator seems simple at face value: use gravity to impart as much force as possible onto a turbine, which spins a generator, thus generating electricity. If you’re like the bloke over at [FarmCraft101] trying to DIY this with your farm pond and a lot of PVC pipes, you may have some significantly more in-depth questions, especially pertaining to what kind of generator to use. This and other questions, some of which were raised after the previous video in which the first prototype generator was assembled, are answered in this follow-up video.

When you DIY such a hydroelectric system, you have a number of options when it comes to just the turbine design alone, with the Kaplan-style turbine being one of the most straightforward ones – especially if you use a fixed pitch instead of adjustable – but you can go pretty far in the weeds with alternatives. As for the sharp drop-off after the turbine in the used design, the technical term is a draft tube, which is actually more efficient in this kind of low head, high flow hydroelectric dam situation.

After getting his money back for the unusable ‘3 kW’ generator, there were three options left: try an EBay special, get a purpose-built one from a US company, or rewind an alternator stator for higher voltage output than the standard 12/24V. Ultimately option four was chosen, as in ‘all of the above’, so that comparison is coming up  in a future video.

Continue reading “The Many Questions And Challenges With DIY Hydroelectric Generators”

The solar-electric tractor is out standing in its field.

Adding Solar Power To An Electric Tractor

In my country, we have a saying: the sun is a deadly lazer. Well, it’s not so much a folk saying as a meme, and not so much in one country as “the internet”. In any case, [LiamTronix] was feeling those cancer rays this harvest season when running his electric tractor, and realized that– since he’s already charging it with ground-mounted solar panels anyway–if he’s going to build a roof for his ride, he might as well make charge the batteries.

Another bonus is safety: the old Massey-Ferguson at the heart of the electric tractor build didn’t come with any rollover protection from the factory back in the 1960s. Since having however many tons of tractor roll onto you was bad enough before it got a big hefty battery pack, we heartily approve of including a roll cage in this build. Speaking of battery packs, he’s taking this chance to upgrade to a larger LiFePo pack from the LiIon pack he installed when we first featured this conversion in 2024.

Atop the new roll cage, and above the new battery, [Liam] installed four second-hand 225 W solar panels. Since that’s under 1kW even if the panels have not degraded, the tractor isn’t going to be getting much charge as it runs. In the northern winter, [Liam] is only able to pull 80 W from the set. That’s not getting much work done, but who wants a tractor without a cab or heater when it’s below freezing? In the summer it’s a much better story, and [Liam] estimates that the roof-mounted panels should provide all of the energy needed to run the tractor for the couple hours a day he expects to use it.

If you’re wondering how practical all this is, yes, it can farm  — we covered [Liam] putting the project through its paces in early 2025.

The big white thing is is the CO2 exhaust bag.

Liquid CO2 For Grid Scale Energy Storage Isn’t Just Hot Air

There’s folk wisdom in just about every culture that teaches about renewable energy — things like “make hay while the sun shines”. But as an industrial culture, we want to make hay 24/7 and not be at the whims of some capricious weather god! Alas, renewable energy puts a crimp in that. Once again, energy supplies are slowly becoming tied to the sun and the wind.

Since “Make compute while the wind blows” doesn’t have a great ring to it, clearly our civilization needs to come up with some grid-scale storage. Over in Sardinia they’re testing an idea that sounds like hot air, but isn’t — because the working gas is CO2. 

The principle is simple: when power is available, carbon dioxide is compressed, cooled, and liquefied into pressure vessels as happens at millions of industrial facilities worldwide every day. When power is required, the compressed CO2 can be run through a turbine to generate sweet, sweet electricity. Since venting tonnes of CO2 into the atmosphere is kind of the thing we’re trying to avoid with this whole rigmarole, the greenhouse gas slash working fluid is stored in a giant bag. It sits, waiting for the next charge cycle, like the world’s heaviest and saddest dirigible. In the test project in Sardinia — backed by Google, amongst others — the gas bag holds 2000 tonnes and can produce 20 megawatts of power for up-to 10 hours.

Continue reading “Liquid CO2 For Grid Scale Energy Storage Isn’t Just Hot Air”

Biogas Production For Surprisingly Little Effort

Probably most people know that when organic matter such as kitchen waste rots, it can produce flammable methane. As a source of free energy it’s attractive, but making a biogas plant sounds difficult, doesn’t it? Along comes [My engines] with a well-thought-out biogas plant that seems within the reach of most of us.

It’s based around a set of plastic barrels and plastic waste pipe, and he shows us the arrangement of feed pipe and residue pipe to ensure a flow through the system. The gas produced has CO2 and H2s as undesirable by-products, both of which can be removed with some surprisingly straightforward chemistry. The home-made gas holder meanwhile comes courtesy of a pair of plastic drums one inside the other.

Perhaps the greatest surprise is that the whole thing can produce a reasonable supply of gas from as little as 2 KG of organic kitchen waste daily. We can see that this is a set-up for someone with the space and also the ability to handle methane safely, but you have to admit from watching the video below, that it’s an attractive idea. Who knows, if the world faces environmental collapse, you might just need it.

Continue reading “Biogas Production For Surprisingly Little Effort”