Tablet Suspension System Avoids Fatigue At Bedtime

You know how it is. You’re all cozy in bed but not quite ready to doze off. You’re reading Hackaday (Hackaday is your go-to bedtime reading material, right?) or you’re binge-watching your latest reality TV obsession on your tablet. You feel the tablet growing heavier and heavier as your arms fatigue from holding it inches above your face. You consider the embarrassment you’ll endure from explaining how you injured your nose as the danger of dropping the tablet gradually increases. The struggle is real.

[Will Dana] has been engineering his way out of this predicament for a few years now, and with the recent upgrade to his iPad suspension system he is maximizing his laziness, but not without putting in a fair amount of hard work first.

The first iteration of the device worked on a manual pulley system whereby an iPad was suspended from the ceiling over his bed on three cords. Pulling on a cord beside the bed would raise the bracket used for holding the iPad out of the way while not in use. This new iteration takes that pesky cord pulling out of the user’s hands, replacing it with a motorized winch. A spot of dark ink on one of the cords in combination with a light sensor helps to calibrate the system so that the ESP32 which controls it always knows the proper limits of operation.

Of course, if, like [Will], you’re using an ESP32, and your room is already fully controlled by a voice interface, you may as well integrate the two. After all, there is no sense in wasting precious energy by pressing buttons. Utter a simple command to Alexa once you’re tucked in, and it’s time for hands-free entertainment.

We’ve covered several of [Will]’s previous creations, such as his Motorized Relay Computer and Harry Potter-inspired Sorting Hat.

Continue reading “Tablet Suspension System Avoids Fatigue At Bedtime”

Presence Detection Augments 1930s Home

It can be jarring to see various sensors, smart switches, cameras, and other technology in a house built in the 1930s, like [Chris]’s was. But he still wanted presence detection so as to not stub any toes in the dark. The result is a sensor that blends in with the home’s aesthetics a bit better than anything you’re likely to find at the Big Box electronics store.

For the presence detection sensors, [Chris] chose to go with 24 GHz mmwave radar modules that, unlike infrared sensors, can detect if a human is in an area even if they are incredibly still. Paired with the diminutive ESP32-S2 Mini, each pair takes up very little real estate on a wall.

Although he doesn’t have a 3D printer to really pare down the size of the enclosure to the maximum, he found pre-made enclosures instead that are fairly inconspicuous on the wall. Another design goal here was to make sure that everything was powered so he wouldn’t have to perpetually change batteries, so a small wire leads from the prototype unit as well.

The radar module and ESP pair are set up with some code to get them running in Home Assistant, which [Chris] has provided on the project’s page. With everything up and running he has a module that can control lights without completely changing the aesthetic or behavior of his home. If you’re still using other presence sensors and are new to millimeter wave radar, take a look at this project for a good guide on getting started with this fairly new technology.

Binner Makes Workshop Parts Organization Easy

We’ve all had times where we knew we had some part but we had to go searching for it all over as it wasn’t where we thought we put it. Organizing the numerous components, parts, and supplies that go into your projects can be a daunting task, especially if you use the same type of part at different times for different projects. It helps to have a framework to keep track of all the small details. Binner is an open source project that aims to allow you to easily maintain a database that can be customized to your use.

dashboard of binner UIIn a recent video for DigiKey, [Byte Sized Engineer] used Binner to track the locations of his components and parts in his freshly organized workshop. Binner already has the ability to read the labels used by well-known electronics suppliers via a barcode scanner, and uses that information to populate your inventory. It even grabs quantities and links in a datasheet for your newly added part. The barcode scanner can also be used to retrieve the contents of a location, so with a single scan Binner can bring up everything residing at that location.

Binner can be run locally so there isn’t the concern of putting in all the effort to build up your database just to have an internet outage make it inaccessible. Another cool feature is that it allows you to print labels, you can customize the fields to display the values you care about.

The project already has future plans to tie into a “smart bin” system to light up the location of your component — a clever feature we’ve seen implemented in previous setups.

Continue reading “Binner Makes Workshop Parts Organization Easy”

Monitor Your Smart Plugs On The Command Line

The plethora of smart home devices available today deliver all manner of opportunities, but it’s fair to say that interfacing with them is more often done in the browser or an app than in the terminal. WattWise from [Naveen Kulandaivelu] is a tool which changes all that, it’s a command-line interface (CLI) for power monitoring smart plugs.

Written in Python, the tool can talk either directly to TP-Link branded smart plugs, or via Home Assistant. It tracks the power consumption with a simple graph, but the exciting part lies in how it can be used to throttle the CPU of a computer in order to use power at the points in the day when it is cheapest. You can find the code in a GitHub repository.

We like the idea of using smart plugs as instruments, even if they may not be the most accurate of measurement tools. It takes them even further beyond the simple functionality and walled-garden interfaces provided by their manufacturers, which in our view can only be a good thing.

Meanwhile, for further reading we’ve looked at smart plugs in detail in the past.

Open Source Framework Aims To Keep Tidbyt Afloat

We recently got a note in the tips line from [Tavis Gustafson], who is one of the developers of Tronbyt — a replacement firmware and self-hosted backend that breaks the Tidbyt smart display free from its cloud dependency. When they started the project, [Tavis] says the intent was simply to let privacy-minded users keep their data within the local network, which was itself a goal worthy enough to be featured on these pages.

But now that Tidbyt has been acquired by Modal and has announced they’ll no longer be producing new units, things have shifted slightly. While the press release says that the Tidbyt backend is going to stay up and running for existing customers, the writing is clearly on the wall. It’s now possible that the Tronbyt project will be able to keep these devices from ending up in landfills when the cloud service is inevitably switched off, especially if they can get the word out to existing users before then.

What’s that? You say you haven’t heard of Tidbyt? Well, truth be told, neither had we. So we did some digging, and this is where things get really interesting.

Continue reading “Open Source Framework Aims To Keep Tidbyt Afloat”

AqMood Is An Air Quality Monitor With An Attitude

You take your air quality seriously, so shouldn’t your monitoring hardware? If you’re breathing in nasty VOCs or dust, surely a little blinking LED isn’t enough to express your displeasure with the current situation. Luckily, [Tobias Stanzel] has created the AqMood to provide us with some much-needed anthropomorphic environmental data collection.

To be fair, the AqMood still does have its fair share of LEDs. In fact, one might even say it has several device’s worth of  them — the thirteen addressable LEDs that are run along the inside of the 3D printed diffuser will definitely get your attention. They’re sectioned off in such a way that each segment of the diffuser can indicate a different condition for detected levels of particulates, VOCs, and CO2.

But what really makes this project stand out is the 1.8 inch LCD mounted under the LEDs. This display is used to show various emojis that correspond with the current conditions. Hopefully you’ll see a trio of smiley faces, but if you notice a bit of side-eye, it might be time to crack a window. If you’d like a bit more granular data its possible to switch this display over to a slightly more scientific mode of operation with bar graphs and exact figures…but where’s the fun in that?

[Tobias] has not only shared all the files that are necessary to build your own AqMood, he’s done a fantastic job of documenting each step of the build process. There’s even screenshots to help guide you along when it’s time to flash the firmware to the XIAO Seeed ESP32-S3 at the heart of the AqMood.

If you prefer your air quality monitoring devices be a little less ostentatious, IKEA offers up a few hackable models that might be more your speed.

Recreating A Braun Classic With 3D Printing

Braun was once a mighty pillar of industrial design; a true titan of the mid-century era. Many of the company’s finest works have been forgotten outside of coffee table books and vintage shops. [Distracted by Design] wanted to bring one of the classics back to life—the Braun HL70 desk fan.

The original was quite a neat little device. It made the most of simple round shapes and was able to direct a small but refreshing stream of air across one’s desk on a warm day. In reality, it was probably bought as much for its sleek aesthetics as for its actual cooling ability.

Obviously, you can’t just buy one anymore, so [Distracted by Design] turned to 3D printing to make their own. The core of the build was a mains-powered motor yanked out of a relatively conventional desk fan. However, it was assembled into a far more attractive enclosure that was inspired by the Braun HL70, rather than being a direct copy. We get a look at both the design process and the final assembly, and the results are quite nice. It feels like a 2025 take on the original in a very positive sense.

Files are available on Printables for the curious. It’s not the first time we’ve contemplated fancy fans and their designs. Video after the break.

Continue reading “Recreating A Braun Classic With 3D Printing”