Growing Simple Crystals For Non-Linear Optics Experiments

Here’s an exercise for you: type “crystals” into your favorite search engine and see what you get. If you’re anything like us, you’ll get a bunch of pseudoscientific posts about the healing power of crystals, along with offers to buy the same at exorbitant prices. But woo-woo aside, certain crystals do have seemingly magical powers — like the ability to turn light from one color into another.

None of this is magic, of course. Rather, as optics aficionado [Les Wright] explains, non-linear optics is all about physics. Big physics, too, like the kind that made the National Ignition Facility the first fusion research outfit to reach the “break-even” point, at least in terms of optical energy. To do so, they need to convert megajoules of infrared laser beams all the way across the visible spectrum into the ultraviolet, relying on huge crystals of deuterated potassium dihydrogen phosphate (KDP) to do so. Depending on how they’re cut, crystals of these sorts have non-linear optical properties like second-harmonic generation, which combines two input photons into a single output photon with twice the energy of the original. This results in a halving of the wavelength of the input, which doubles the frequency.

While the process used at the NIF produces crystals of enormous proportions, [Les] has more modest needs and thus a simpler process. His KDP is an off-the-shelf chemical, nothing fancy about it, which is added to boiling water to make a saturated solution. A little of the solution is poured out into a watch glass to make seed crystals, and everything is allowed to cool slowly. A nice seed crystal is glued to a piece of monofilament fishing line and suspended in the saturated solution, and with enough time a good-sized crystal forms. Placed into the beam path of a 1,064 nm IR laser and rotated carefully relative to the beam, the crystal easily produces a brilliant green laser output.

This is fascinating stuff, and we’re looking forward to seeing where [Les] goes with this. Polishing the crystals to make them optically cleaner would be a good next step, as would perhaps growing even larger crystals.

Continue reading “Growing Simple Crystals For Non-Linear Optics Experiments”

TeraByte InfraRed Delivery (TBIRD)

NASA Team Sets New Space-to-Ground Laser Communication Record

[NASA] and a team of partners has demonstrated a space-to-ground laser communication system operating at a record breaking 200 gigabit per second (Gbps) data rate. The TeraByte InfraRed Delivery (TBIRD) satellite payload was designed and built by [MIT Lincoln Laboratory]. The record of the highest data rate ever achieved by a space-to-Earth optical communication link surpasses the 100 Gbps record set by the same team in June 2022.

TBIRD makes passes over an ground station having a duration of about six-minutes. During that period, multiple terabytes of data can be downlinked. Each terabyte contains the equivalent of about 500 hours of high-definition video. The TBIRD communication system transmits information using modulated laser light waves. Traditionally, radio waves have been the medium of choice for space communications. Radio waves transmit data through space using similar circuits and systems to those employed by terrestrial radio systems such as WiFi, broadcast radio, and cellular telephony. Optical communication systems can generally achieve higher data rates, lower loses, and operate with higher efficiency than radio frequency systems. Continue reading “NASA Team Sets New Space-to-Ground Laser Communication Record”

Easy Graphene Production With A Laser Engraver

Graphene isn’t easy to produce at scale. But making small batches of graphene is doable in a few ways. [Robert Murray-Smith] decided to try producing “flash graphene.” This requires a big capacitor bank that is moderately expensive, so he decided to explain a different technique he read about using an ordinary laser cutter. Check it out in the video below.

We were a little disappointed that he didn’t actually make any graphene this time. He has, however, used other methods in other videos to create some type of graphene. In fact, he has many similar videos going back quite a ways as well as applications with concrete, capacitors, and more. We understand that this method doesn’t produce monolayer graphene, but actually creates a graphene “foam” with interesting properties. [Robert] talks about recent papers that show you can grow graphene on things other than Kapton tape using this method.

Continue reading “Easy Graphene Production With A Laser Engraver”

Modern CO2 Laser Reviewed

If you’ve got a laser cutter, it is highly probable that it uses a laser diode. But more expensive machines use a carbon dioxide laser tube along with mirrors. There was a time when these lasers came in two flavors: very expensive and amazing or moderately expensive and cheaply made. However, we are seeing that even the moderately expensive machines are now becoming quite advanced. [Chad] reviews a 55-watt xTool P2. At around $5,000, it is still a little spendy for a home shop, but it does have pretty amazing features. We can only hope some less expensive diode lasers will adopt some of these features.

[Chad’s] video that you can see below attempts to recreate some of the amazing things xTool did on their product introduction live stream. He was able to recreate most, but not all of the results. In some cases, he was also able to do better.

Continue reading “Modern CO2 Laser Reviewed”

Artemis II Laser Communications

Artemis II Will Phone Home From The Moon Using Laser Beams

[NASA] Astronauts will be testing the Orion Artemis II Optical Communications System (O2O) to transmit live, 4K ultra-high-definition video back to Earth from the Moon. The system will also support communication of images, voice, control channels, and enhanced science data.

Aboard Orion, the space terminal includes an optical module, a modem, and a control system.  The optical module features a four inch telescope on a dual gimbal mount. The modem modulates digital information onto laser beams for transmission back to Earth, and demodulates data from laser beams recieved from Earth. The control system interfaces with avionic systems aboard Orin to control and point the communications telescope.

On Earth, facilities including the Jet Propulsion Laboratory and the White Sands Complex will maintain high-bandwidth optical communication links with Orion. Information received from Orion will be relayed to mission operations, scientists, and researchers.

NASA’s Laser Communications Relay Demonstration (LCRD) showcases the benefits of optical communications.  Traditionally, missions relied upon radio communication, but improved technology will better serve space missions that generate and collect ever-increasing quantities of data. Optical communication solutions can provide 10 to 100 times the bandwidth of radio frequency systems. Other improvements may include increased link distances, higher efficiency, reduced interference, improved security, and reductions in size and weight. Our Brief History of Optical Communication outlines many of these advantages.

Continue reading “Artemis II Will Phone Home From The Moon Using Laser Beams”

Laser Projector Built From An Old Hard Drive

Spinning hard drives are being phased out of most consumer-grade computers in favor of faster technology like solid-state drives and their various interfaces. But there’s still millions of them in circulation that will eventually get pulled from service — so what do we do with them? If you’ve got one that would otherwise be going in the garbage, they can be turned into some other interesting devices like this laser text projector.

Even the slowest drives spin at around 5000 RPM, which is perfect for this type of application. The device works by mounting twelve mirrors, each at a slightly different angle, on a drum which is spun by the drive’s motor. Bouncing a laser off of the spinning drum results in a projection of twelve horizontal lines. By rapidly switching the laser on and off depending on which mirror it’s pointing at, the length of each line can be controlled.

Thanks to persistence of vision, that allows you to show text on the surface that the laser is projected on. At speeds this high, it took [Ben] of Ben Makes Everything quite a few iterations to get it to a usable space. From sensors that were too slow to lasers not bright enough to 3D prints that were not accurate enough, he goes through the design of his build and the process in excellent detail.

After solving all of the problems including building his own constant-current laser power supply, and burning up a few laser diodes in the process, [Ben] has a laser projector capable of displaying readable text at a great distance which is also portable, running on a 12 V power supply. There are some possible areas of improvement that he notes as well, such as an unbalanced 3D printed part causing a bit of a wobble and the Arduino controller not being fast enough for more text. But it’s an impressive project nonetheless, similar to a two-mirror version we saw some time ago but with the ability to display text as well.

Continue reading “Laser Projector Built From An Old Hard Drive”

Kerfmeter Measures Laser Cutter Kerf Allowances On The Fly

Nothing beats a laser cutter and a sheet of Baltic birch plywood or MDF when it comes to making quick, attractive enclosures. Burning out all the pieces and fitting them together with finger joints is super satisfying — right up until you realize that you didn’t quite get the kerf allowance right, and your pieces don’t fit together very nicely. If only there was a way to automate kerf measurement.

There is, in the form of Kerfmeter. It comes to us by way of the lab of [Patrick Baudisch] at the University of Potsdam, where they’ve come up with a clever way to measure the kerf of a laser cutter right during the cutting session. With the Kerfmeter mounted directly to the laser cutter head, a small test artifact based on an Archimedean spiral is cut into a corner of the workpiece. Pins on a small motor engage with the object and turn it until it jams in its hole; the wider the kerf, the greater the angle. Once the kerf is calculated, the rest of the design can be dilated by the proper amount to achieve a perfect fit. The video below shows it better than words can explain it.

What we like about this is its simplicity — all it involves is a motor and a microcontroller, plus a little software. It seems much faster than using a traditional kerf gauge, not to mention more precise. And while it does use up a little bit of material, the test pattern is really pretty small, all things considered. Seems like a reasonable trade-off to us. Still, if you want to figure out your kerfs the old-fashioned way, we’ve got you covered.

Continue reading “Kerfmeter Measures Laser Cutter Kerf Allowances On The Fly”