A Neural Network Can Now Be Your Writing Assistant

Writing is a difficult job; though, as a primarily word-based site, we may be a little biased here at Hackaday. Not only does a writer have to know the basics, like what a semicolon is and when to use one, they also need to build sentences that convey information in a manner that is pleasant to read. As many commenters like to point out, even we struggle with this on occasion (lauded and scholarly as we are).

Wouldn’t it be better if we could let our computers do the heavy lifting for us? After all, a monkey with infinite time will eventually write Shakespeare and all that. Surely, a computer can be programmed to do all that fancy word assembly while we sit back and enjoy some coffee. Well, that’s what [Robin Sloan] set out to do with a recurrent neural network-powered writing assistant.

Alright, so it doesn’t actually write completely on its own. Instead, [Robin’s] software takes advantage of [JC Johnson’s] torch-rnn project, and integrates it into Atom to autocomplete sentences. [Robin] trained his neural network on hundreds of old issues of the sci-fi magazines Galaxy and IF Magazine, which are available at the Internet Archive. Once the server and corresponding Atom package are installed, a writer can simply push the Tab key and the sentence will be completed.

The results are interesting. [Robin] himself says “it’s like writing with a deranged but very well-read parrot on your shoulder.” While it’s not likely to be used as a serious writing tool anytime soon, the potential is certainly intriguing. When trained on relevant source material, the integration into software like Atom could be very useful. If a neural network can compose music, surely it can write some silly tech articles.

[thanks to Tim Trzepacz for the tip!]

Typewriter image: LjL (Public domain).

Shed Pounds And Inches While Binge Watching Netflix

Feel like breaking out of your streaming-induced vegetative state but can’t seem to break the binge-watching cycle? Maybe you’re a candidate for this exercise bike that controls how much Netflix you watch.

The concept behind [Roboro]’s anti-couch potato build is simple — just keep pedaling and you get to keep watching. The details are pretty simple too and start with an Arduino monitoring the signal coming from a jack thoughtfully provided by the manufacturer of his exercise bike. The frequency of the square wave is translated into a speed which a Python script on a PC reads over USB. Once a Netflix stream is started, dropping below the user-defined speed pauses the movie. The video below shows it doing its thing.

Improvements readily spring to mind, like adding a speed buffer so that pedaling faster lets you bank some streaming time and earn a rest. Maybe it could somehow integrate with these Netflix-enabled socks, or even with the Netflix and Chill button. But those sort of defeat the purpose a bit.

Continue reading “Shed Pounds And Inches While Binge Watching Netflix”

ESP8266 Dev Board Sports Flying Squirrel PCB Art

[Jarrett] has a box of Nokia phone batteries and decided to use them in a project. He designed and built WiFi throwies— these consist of ESP8266 WiFi chips attached to custom PCBs and powered by Nokia phone batteries. The board charges LiPoly/Li-Ion batteries over USB with the help of a MCP73831 charger chip and has USB-serial on-board. It’s much more of a powered ESP8266 dev board than a throwie, but we’ll give [Jarrett] the benefit of the doubt.

The PCB ended up larger than [Jarrett] would have liked, because of the size requirements of the phone battery connected to it. However, this gave him the canvas to create some fun PCB art. After designing the board he imported the Gerbers into Adobe Photoshop and converted each layer into a monocolor image based on the material of that layer—purple for OSHPark’s stencil mask, beige for DirtyPCB’s FR4, and so on. One challenge [Jarrett] encountered was how to get the art back into Altium Circuit Maker, his layout program of choice. After playing around with different methods for a few days, he wrote a tutorial sharing what he found out.

HaD has covered WiFi throwies before. We also appreciate a beautiful circuit board. Check out our posts on turning PCBs into art and making lapel pins out of circuit board fiberglass.

Old Rabbit Ears Optimized For Weather Satellite Downlink

Communicating with a satellite seems like something that should take a lot of equipment. A fancy antenna and racks full of receivers, filters, and amplifiers would seem to be the entry-level suite of gear. But listening to a weather satellite with an old pair of rabbit ears and an SDR dongle? That’s a thing too.

There was a time when a pair of rabbit ears accompanied every new TV. Those days are gone, but [Thomas Cholakov (N1SPY)] managed to find one of the old TV dipoles in his garage, complete with 300-ohm twinlead and spade connectors. He put it to work listening to a NOAA weather satellite on 137 MHz by configuring it in a horizontal V-dipole arrangement. The antenna legs are spread about 120° apart and adjusted to about 20.5 inches (52 cm) length each. The length makes the antenna resonant at the right frequency, the vee shape makes the radiation pattern nearly circular, and the horizontal polarization excludes signals from the nearby FM broadcast band and directs the pattern skyward. [Thomas] doesn’t mention how he matched the antenna’s impedance to the SDR, but there appears to be some sort of balun in the video below. The satellite signal is decoded and displayed in real time with surprisingly good results.

Itching to listen to satellites but don’t have any rabbit ears? No problem — just go find a cooking pot and get to it.

Continue reading “Old Rabbit Ears Optimized For Weather Satellite Downlink”

Hacking Touch Screens To Count Pulses

Heart rate sensors available for DIY use employ photoplethysmography which illuminates the skin and measures changes in light absorption. These sensors are cheap, however, the circuitry required to interface them to other devices is not. [Petteri Hyvärinen] is successfully investigating the use of capacitive touchscreens for heart rate sensing among other applications.

The capacitive sensor layer on modern-day devices has a grid of elements to detect touch. Typically there is an interfacing IC that translates the detected touches into filtered digital numbers that can be used by higher level applications. [optisimon] first figured out a way to obtain the raw data from a touch screen. [Petteri Hyvärinen] takes the next step by using a Python script to detect time variations in the data obtained. The refresh rate of the FT5x06 interface is adequate and the data is sent via an Arduino in 35-second chunks to the PC over a UART. The variations in the signal are very small, however, by averaging and then using the autocorrelation function, the signal was positively identified as a pulse.

A number of applications could benefit from this technique if the result can be replicated on other devices. Older devices could possibly be recycled to become low-cost medical equipment at a fraction of the cost. There is also the IoT side of things where the heart-rate response to media such as news, social media and videos could be used to classify content.

Check out our take on the original hack for capacitive touch imaging as well as using a piezoelectric sensor for the same application.

PCB Art Becomes Lapel Pins

We’re now living in the golden age of PCB art. Over the last year or so, the community has learned to manipulate silk screen, copper, and solder mask layers into amazing pieces of craftsmanship. These boards are putting the ‘A’ in STEAM, and now we have fiberglass replacements for enamel lapel pins.

[jglim] didn’t have much experience with fabric, but a PCB lapel pin was something that seemed like it should work. There are really only three parts to a lapel pin — the small ornamental pin itself, a solderable spike somehow attached to the pin (usually by soldering), and a clasp that holds the pin steadfastly to a lapel. The spike and clasp assembly were easily sourced on AliExpress, with one hundred clasps available for seven dollerydoos.  Attaching the spike to the PCB was as simple as adding a circular copper pad on the obverse side, applying some solder, and the liberal application of toaster ovens.

The design of the pin was based on the HTML5 logo, with the actual art done in Photoshop using a palette picked from OSHPark’s preview colors. The four colors used in this design are bare copper, a light purple for mask over copper, a darker purple for mask without copper, and a pale yellow for exposed FR4. This design was imported into KiCad with the Bitmap2Component tool.

The assembly of these lapel pins went very easily, and the finished product looks great. There’s a lot you can do with the standard OSHPark color stackup like making money of me, and this is a great example of exactly how much you can do with PCB art.

Camera Slide Pans And Tilts Camera Mechanically

A camera slider is a popular and simple project — just a linear slide, a stepper, and some sort of controller. Adding tilt and pan axes ups the complexity until you’ve got three motors, a controller, and probably a pretty beefy battery pack to run everything. Why not simplify with an entirely mechanical pan-tilt camera slider and leave all that heavy stuff at home?

There’s more than one way to program motion control, and [Enza3D]’s design uses adjustable rails to move the gimballed pan-tilt head through two axes of motion. One rail adjusts vertically to control tilt, while the other adjusts in and out relative to the slider to control pan. Arms ride on each rail and connect to the gimbals to swivel the camera in both dimensions while it travels down the manually cranked slide. It’s pretty clever and results in some clean, dynamic shots as in the video below.

Our quibble is that the “program” is only linear since the control rails are straight lengths of aluminum extrusion; seems to us that some sort of flexible control rails might make for more interesting shots. [Enza3D] has amply documented the build and is looking for feedback, so comment away. And if you don’t have a 3D printer to make the parts, wood works for a slider too.

Continue reading “Camera Slide Pans And Tilts Camera Mechanically”