Wrapping Up Maker Faire With [Ben Heck], Giant Arduinos, And An Apple Lisa

All good things, and apparently our coverage of Maker Faire, must come to an end. Here’s a few more things we saw in New York this last weekend that piqued our interest:

A 10x scale Arduino

[Robert Fitzsimons] of Part Fusion Electronics made a gigantic Arduino. It wasn’t quite functional, but [Robert] did manage to make a few 10:1 scale LEDs (with built-in circuit protection), 1 inch pitch headers, and a few other miscellaneous components out of foam and paint.

Since he’s from Dublin, Ireland, [Robert] didn’t want to take this giant board home with him. He graciously gave it to me in the hopes of turning it in to a proper working Arduino. I’ll do my best, [Robert].

There are hundreds of Lisas buried in a landfill in Utah.

Tekserve, an indie Apple store located in the heart of Manhattan, really knows how to put on a good show. For the entirety of their stay at Maker Faire, they had people showing off one of the first digital cameras, Apple Newtons, and an awesome collection of vintage Macs. No, your eyes do not deceive you; that’s a real Lisa there in the bunch.

Sadly, they didn’t have the boot disk to turn any of these on. Pity.

Yes, there were celebrities at Maker Faire

Well, celebrities to the Hackaday crowd, at least. [Ben Heck] showed off the electronic automatic sunglasses he built. It’s a pair of lensless glasses, a servo, light detector, and a pair of clip-on sunglasses. When [Ben] is out in daylight, the sunglasses swivel down. Inside, the amount of light received by the detector decreases and the shades rotate up.

Continue reading “Wrapping Up Maker Faire With [Ben Heck], Giant Arduinos, And An Apple Lisa”

Light Bulb Efficiency Exhibit Updated With LED Bulb Option

It seems like tinkerers are always being tapped to build or repair exhibit hardware. This time around it’s [Dino’s] turn. He’s been asked to alter a light bulb efficiency demo so that it includes an LED option.

The idea here is that you crank a generator to power different types of light bulbs. There’s an ammeter built in, but possibly the best feedback is knowing how hard you have to crank to illuminate the most inefficient choice. As it stands there is a toggle switch to choose between incandescent and CFL bulbs. [Dino’s] solution is to use a three-position rotary switch. He removes the toggle switch and replaces it with a socket for the LED bulb. A new location for the rotary switch is chosen and he does a bit of work to get it mounted securely. If you haven’t worked with this type of switch before he takes the time in the video after the break to explain how they work.

Continue reading “Light Bulb Efficiency Exhibit Updated With LED Bulb Option”

Weather Balloon Payload That (almost) Guides Itself Back To You

The biggest issue with sending expensive electronics into near space is trying to recover them. [Lhiggs] set out to solve this issue with his Senior project for a Mechanical Engineering degree. He figured that a payload dropped from 100,000 feet should be able to glide its way back to some predefined coordinates. Here you can see one of the tests, where the payload is guiding its descent using a parafoil.

Directional control is possible with a parafoil simply by shifting weight between the two supporting ropes. In this case [Lhiggs] designed the payload to hang from a pair of servo-motor-actuated arms. Since the payload already carries altitude and position hardware (such as a GPS, electronic compass, and altimeter) it’s just a matter of waiting for the target height before separating from the weather balloon, then using the servos to navigate to the landing zone.

Unfortunately the project was never fully completed. But you can see that he got pretty far. There is test footage embedded after the break showing the device being dropped from a plane.

Continue reading “Weather Balloon Payload That (almost) Guides Itself Back To You”

How A Quarter Shrinker Works

This machine is capable of shrinking coins. What you’re looking at is actually a 3D model of the Geek Groups impulse generator, which is called Project Stomper. The model is used to explain how induction shrinks a quarter to the size of a dime.

The grey chamber to the left is a reinforced containment device. It’s a safety feature to keep people in the same room as the Stomper safe from flying particles which may result from the forces this thing can put out. You see, it uses a mountain of magnetic energy to compress the edges of a coin in on itself.

As the video after the break illustrates, the main part of the machine on the right starts off by boosting mains voltage using a microwave oven transformer. This gets the AC to 2000V, which is then rectified and boosted further to get to 6000V DC. This charges three huge parallel capacitors which are then able to source 100,000A at 6 kV. When it comes time to fire, the charge is dumped into a coil which has the coin at its center. The result is the crushing magnetic field we mentioned earlier.

This isn’t a new concept, we featured a different coin crusher build in the early years of Hackaday’s existence.

Continue reading “How A Quarter Shrinker Works”

Making Logic Gates Out Of Crabs

Building logic gates out of silicon is old hat, as is building them from discrete transistors, 555 chips, LEGO, and even gears. [Yukio-Pegio Gunji] and [Yuta Nishiyama] from Kobe University, along with [Andrew Adamatzky] from the aptly named Unconventional Computing Centre at the University of the West of England decided they needed a new way to build logic gates using crabs (PDF warning). Yes, the team successfully built functional logic gates using Mictyris guinotae, a species of soldier crab native to the South Seas.

The colonies of soldier crabs that inhabit the lagoons of Pacific atolls display a unique swarming behavior in their native habitat. When in a swarm of hundreds of individuals, the front of the swarm is driven by random turbulence in the group, while the back end of the swarm simply follows the leaders. Somehow, this is a successful evolutionary strategy, but it can also be exploited to build logic gates using only crabs.

The team constructed a Y-shaped maze for a pair of crabs to act as an OR gate. When two soldier crabs are placed at the top of the ‘Y’, they move forward until they meet and exit the maze through the output. This idea can be expanded to a slightly more complex AND gate, functionally identical to the electron-powered AND gate in a 7408 logic chip.

While the team has only made OR and AND gates – nothing functionally complete yet – there’s no reason to believe this crab-based system of computation couldn’t be expanded to a (very) basic calculator.

Astounding Papercraft Skills Result In This Working Robot

It would have been very hard to believe this is made from paper if we hadn’t seen all the parts being built. As a still image it looks neat, but the speed at which those paper gears turn in the video after the break will certainly leave you slack-jawed. It really is a walking robot made using papercraft (translated).

These are actually being sold as kits, but there’s not much in the way of materials. You’ll get six sheets of paper, some skewers which act as the axles, and a bit of elastic band which stores potential energy when winding-up the model. The genius is in the design, which is printed on those sheets of paper. The build process involves plenty of delicate work. Dozens of cuts lead into hundreds of folds, and that’s before assembly even starts. We’ve never considered building a ship in a bottle, but this might be right up our alley. If you need to give a gift to a tinkerer this should show up high on the idea list.

Continue reading “Astounding Papercraft Skills Result In This Working Robot”

Integrating A Power Bus Into A Quadcopter Frame

When working on flying vehicles weight is always a consideration. [Brendin] found a way to get rid of a wiring harness on his quadcopter, simplifying the assembly while lightening the load. He did it by incorporating the power bus into the frame of the vehicle.

He started with some copper clad board. Because the substrate is a structural component he didn’t want to use a CNC mill to do the etching as it also removes a bit more than just copper. After using the mill to cut out the shape and drill holes he coated the board with flat black paint. This acts as the etch resist, which he sent through a 50W laser engraver to remove the paint and expose the areas he wants to etch. After etching he removed the rest of the resist, and masked off his solder pads with small rectangles of electrical tape. This protects the solder pads from the truck bed liner paint he uses to insulate the copper. He says it works great and plans to use the technique on all future builds.