Finally, A Modern Theremin

Ever wanted to own your own Theremin but couldn’t justify dropping hundreds of dollars on one? Now you can build your own, or buy it for a quintuplet of Hamiltons. The Open.Theremin.UNO project has built up antenna-based oscillator control around the ubiquitous Arduino Uno board.

So what’s the Arduino in there for? This is a digital Theremin, but check out the video below and you’ll agree that it sounds amazing and has excellent response. The aluminum antennas used for volume and pitch are attached to the top portion of the shield but it sounds like they’re not included in the kit. Don’t fret, you can use a variety of materials for this purpose. On the bottom you need to connect a speaker cable, and also a ground wire if that cable’s not grounded.

As the name implies, this is Open Hardware and we’re quite happy with the documentation on their site and the BOM (found on the GitHub repo). This design was shown off back in 2013 hiding in a pack of cigarettes. If you don’t want to build your own they’re selling kits on their site for 48 Euro delivered, or on Tindie for $55.

Okay, we’ve screwed this up so many times that we’re going to try to get it right here: the Theremin was not heard in the opening of Star Trek the original series, or in the opening of Doctor Who. It wasn’t featured in “Good Vibrations” either. As far as we can tell, it’s not used for anything in pop culture at all… but recognizing the sound and knowing what one is remains core geek knowledge.

If you want a Theremin to play using your entire body you need the Theremin Terpsitone.

Continue reading “Finally, A Modern Theremin”

Drawn In By The Siren’s Song

When I say “siren” what do you think of? Ambulances? Air raids? Sigh. I was afraid you were going to say that. We’ve got work to do.

You see, the siren played an important role in physics and mathematics about 150 years ago. Through the first half of the 1900s, this fine apparatus was trivialized, used for its pure noise-making abilities. During the World Wars, the siren became associated with air raids and bomb shelters: a far cry from its romantic origins. In this article, we’re going to take the siren back for the Muses. I want you to see the siren in a new light: as a fundamental scientific experiment, a musical instrument, and in the end, as a great DIY project — this is Hackaday after all.

Continue reading “Drawn In By The Siren’s Song”

Saving Old Voices By Dumping ROMs

Some people collect stamps. Others collect porcelain miniatures. [David Viens] collects voice synthesizers and their ROMs. In this video, he just got his hands on the ultra-rare Electronic Voice Alert (EVA) from early 1980s Chrysler automobiles (video embedded below the break).

Back in the 1980s, speech synthesis was in its golden years following the development of TI’s linear-predictive coding speech chips. These are the bits of silicon that gave voice to the Speak and Spell, numerous video game machines, and the TI 99/4A computer’s speech module. And, apparently, some models of Chrysler cars.

IMG_0695We tracked [David]’s website down. He posted a brief entry describing his emulation and ROM-dumping setup. He says he used it for testing out his (software) TMS5200 speech-synthesizer emulation.

The board appears to have a socket for a TMS-series voice synthesizer chip and another slot for the ROM. It looks like an FTDI 2232 USB-serial converter is being used in bit-bang mode with some custom code driving everything, and presumably sniffing data in the middle. We’d love to see a bunch more detail.

The best part of the video, aside from the ROM-dumping goodness, comes at the end when [David] tosses the ROM’s contents into his own chipspeech emulator and starts playing “your engine oil pressure is critical” up and down the keyboard. Fantastic.

Continue reading “Saving Old Voices By Dumping ROMs”

Retrotechtacular: The Theremin Terpsitone

Léon Theremin built his eponymous instrument in 1920 under Soviet sponsorship to study proximity sensors. He later applied the idea of generating sounds using the human body’s capacitance to other physical forms like the theremin cello and the theremin keyboard. One of these was the terpsitone, which is kind of like a full-body theremin. It was built about twelve years after the theremin and named after Terpsichore, one of the nine muses of dance and chorus from Greek mythology.

Continue reading “Retrotechtacular: The Theremin Terpsitone”

Oh Baby, Baby10 – Build A Classic Analog Music Sequencer

Recently I’ve been learning more about classic analog music synthesizers and sequencers. This has led me to the Baby10, a classic and simple analog sequencer design. In this article I’ll introduce its basic operation, and the builds of some awesome hackers based on this design.

Sequencers produce, a sequence of varying voltages. These control voltages (CV) can then be use to control other components. Often this is a simple tone generator. While the concept is simple, it can produce awesome results:

A basic sequencer is a great beginners project. It’s easy to understand the basic operation of the circuit and produces a satisfyingly entertaining result. The Baby 10 was originally published in a column called “Captain’s Analog”, but has now been widely shared online.

baby10
The original Baby10 article.

The circuit uses the 4017, a simple CMOS decade counter. The 4017 takes an input clock signal then sequentially outputs a high pulse on each of 10 output pins. As such, the 4017 does almost everything we need from a sequencer in a single IC! However, we want our sequencer to output a varying voltage which we can then use to generate differing tones.

To accomplish this variable resistors are connected to each of the output pins. A diode in series with the variable resistor stops the outputs fighting against each other (in layman’s terms).

To make the sequencer more visually attractive (and give some feedback) LEDs are often also added to the output of the 4017. A complete Baby 10 sequencer is shown in the schematic below. The original circuit used 1N917s, these are no longer available but the part has been replaced by the 1N4148.

Continue reading “Oh Baby, Baby10 – Build A Classic Analog Music Sequencer”

Second Skin Synth Fits Like A Glove

California textiles artist and musician [push_reset] challenged herself to make a wearable, gesture-based synth without using flex-sensing resistors. In the end, she designed almost every bit of it from the ground up using conductive fabric, resistive paint, and 3-D printed parts.

A couple of fingers do double duty in this glove. Each of the four fingertips have a sensor made from polyurethane, conductive paint, and conductive fabric that is connected to wires using small rivets. These sensors trigger different samples on an Edison that are generated with Timbre.js. The index and middle fingers also have knuckle actuators made from 3-D printed pin-and-slot mechanisms that turn trimmer pots. Bending one knuckle changes the delay timing while the other manipulates a triangle wave.

On the back of the glove are two sensors made from conductive fabric. Touching one up and down the length will alter the reverb. Sliding up and down the other alters the frequency of a sine wave. [push_reset] has kindly provided everything necessary to re-create this build from the glove pattern to the STL files for the knuckle actuators. Check out a short demonstration of the glove after the break. If you love a parade, here’s a wearable synth that emulates a marching band.

Continue reading “Second Skin Synth Fits Like A Glove”

The Smallest MIDI Synthesizer?

Dang. [Mixtela] has just managed a seriously cool hack: running an entire MIDI synthesizer on an ATTiny85 to create what he claims is the worlds smallest MIDI synthesizer. That’s it on the left, next to a standard MIDI cable plug. microMidi3-guts-thumbThe whole thing is so small it fits inside a MIDI plug and can run off the power supplied by the MIDI output, driving a small pizeo buzzer. Considering that the ATTiny85 has just 8Kb of memory and 512 bytes of RAM, this is no small feat (get it?). To create the sound, [Mixtela] simply drives the buzzer with PWMed square waves, creating the glorious early chiptunes sound that every retro gamer will recognize.

He even decided to implement some MIDI commands beyond just playing notes, including pitch bending, and is considering ways to add polyphony to his small miracle. Sure, it isn’t going to win any awards for sound quality, and without optoisolators it doesn’t really fit the MIDI spec. But it works, and remember that MIDI synthesizers used to be big, expensive devices that required a degree in sound engineering to program. Now, thanks to hackers like [Mixtela], you can build your own from parts that cost only a couple of dollars.

Continue reading “The Smallest MIDI Synthesizer?”