DJ Scratches Out Club Music With Tape, Not Turntables

It goes without saying that not everyone has the same taste in music, and what sounds amazing to one person will be the next person’s noise. But even if you’re not into hip-hop and the whole DJ scene, it’s hard not to be impressed with what [Jeremy Bell] has done here with his homemade tape loop “scratching” rig.

Most people have probably seen a DJ in a club using dual turntables to scratch or “scrub” a vinyl record back and forth to create effects that add to the music. Part musician and part performance artist, DJs and “turntablists” tend to be real crowd-pleasers. [Jeremy]’s “ScrubBoard” uses a loop of 2″ audiotape, the kind recording studios once used for multitrack recordings. The loop is driven across a wide platen by a motor with a foot pedal control, which he can use to quickly reverse the direction of travel and control the speed of the tape. A pair of playback heads are wired into the amplifier and can be positioned anywhere on the sometimes moving, sometimes stationary tape. The sounds he can create are rhythmic, percussive, and at times frenetic, but they’re always interesting. Check it out in action in the video below.

This version of the ScrubBoard is far from the first [Jeremy] has built. You may recall his first prototype from our coverage in 2014; that one used just a few feet of 1/4″ tape fixed to a board. He was still able to get some great sounds from it, but this version should really change things for him. 

Continue reading “DJ Scratches Out Club Music With Tape, Not Turntables”

Pouring Creativity Into Musical Upcycling Of Plastic Bottles

Convenient and inexpensive, plastic beverage bottles are ubiquitous in modern society. Many of us have a collection of empties at home. We are encouraged to reduce, reuse, and recycle such plastic products and [Kaboom Percussion] playing Disney melodies on their Bottlephone 2.0 (video embedded below) showcases an outstanding melodic creation for the “reuse” column.

Details of this project are outlined in a separate “How we made it” video (also embedded below). Caps of empty bottles are fitted with commodity TR414 air valves. The pitch of each bottle is tuned by adjusting pressure. Different beverage brands were evaluated for pleasing tone of their bottles, with the winners listed. Pressure levels going up to 70 psi means changes in temperature and inevitable air leakage makes keeping this instrument in tune a never-ending task. But that is a relatively simple mechanical procedure. What’s even more impressive on display is the musical performance talent of this team, assisted by some creative video editing. Sadly for us, such skill does not come in a bottle. Alcohol only makes us believe we are skilled without improving actual skill.

But that’s OK, this is Hackaday where we thrive on building machines to perform for us. We hope it won’t be long before a MIDI-controlled variant is built by someone, perhaps incorporating an air compressor for self-tuning capabilities. We’ve featured bottles as musical instruments before, but usually as wind instruments like this bottle organ or the fipple. This is a percussion instrument more along the lines of the wine glass organ. It’s great to see different combinations explored, and we are certain there are more yet to come.

Continue reading “Pouring Creativity Into Musical Upcycling Of Plastic Bottles”

Rock Out With Toilet Paper Rolls

Singing in the shower is such a common phenomenon, rarely anyone ever bats an eye about it. Singing in the toilet on the other hand is probably going to raise an eyebrow or two, and it’s not for nothing that the Germans euphemistically call it “stilles Örtchen”, i.e. the little silent place. But who are we to judge what you do in the privacy of your home? So if you ever felt a lack of instrumental accompaniment, or forgot to bring your guitar, [Max Björverud] has just the perfect installation for you. (Video, embedded below.)

Inspired by the way bicycle computers determine your speed, [Max] took a set of toilet paper holders, extended each roll holding part with a 3D-printed attachment housing a magnet, and installed a Hall-effect sensor to determine the rolling activity. The rolls’ sensor data is then collected with an Arduino Mega and passed on to a Raspberry Pi Zero running Pure Data, creating the actual sounds. The sensor setup is briefly shown in another video.

Before you grab your pitchforks, [Max] started this project a little while back already, long before toilet paper became an object of abysmal desire. Being an artist in the field of interactive media, this also isn’t his first project of this kind, and you can find some more of his work on his website. So why of all things did we pick this one? Well, what can we say, we definitely have a weakness for strange and unusual musical instruments. And maybe there’s potential for some collaboration here?
Continue reading “Rock Out With Toilet Paper Rolls”

3D Printed Speakers With Many Lessons Learned

Although we all wish that our projects would turn out perfect with no hiccups, the lessons learned from a frustrating project can sometimes be more valuable than the project itself. [Thomas Sanladerer] found this to be the case while trying to build the five satellite speakers for a 5.1 surround sound system, and fortunately shared the entire process with us in all its messy glory.

[Thomas] wanted something a little more attractive than simple rectangular boxes, so he settled on a very nice curved design with few flat faces and no sharp corners, 3D printed in PLA. Inside each is an affordable broadband speaker driver and tweeter, with a crossover circuit to improve the sound quality and protect the drivers. The manufacturer of the drivers, Visatron, provides very nice speaker simulation software to select the appropriate drivers and design the crossover circuit. The front of each speaker consisted of a 3D printed frame, covered with material from a cut-up T-shirt. These covers attach to the main body using magnets and really look the part.

After printing, [Thomas] soaked all the parts in water to clean of the PVA support structures but discovered too late that the outer surfaces are not watertight and a lot of water had seeped into the parts. In an attempt to dry them he left them in the sun for a while which ended up warping some parts, so he had to reprint them anyway. The main bodies were printed in two parts and then glued together. This required a lot of sanding to smooth out the glue joints, and many cycles of paint and sanding to get rid of the layer lines. When assembling the different pieces, he found that many parts did not fit together, which he suspects was caused by incorrect calibration on the delta-bot printer he was using.

In the end, the build took almost two years, as [Thomas] needed breaks between all the frustration, and eventually only used one of the speakers. We’re glad he shared the messy parts of the project, which will hopefully spare someone else a bit of trouble in a project.

Listening to a high-quality audio setup is always a pleasure, and we’ve covered several projects from audiophiles, including affordable DML speakers, and 3D printed speaker drivers.

Continue reading “3D Printed Speakers With Many Lessons Learned”

Quieting Down A Bandoneon Accordion With MIDI

The bandoneon, known as the tango accordion, is quite a loud instrument to practice within the confines of an apartment, and could possibly lead to some neighborly disputes. [HLB] enjoyed playing his but wanted a way to turn down the volume a bit without, in consideration to his neighbors. Instead of building a whole soundproof room, he decided to throw Arduino’s and MIDI at the problem.

Bandoneons, like all accordions, are operated by pushing air from manually pumped bellows through a series of reeds, which are each opened and closed by a valve mechanism. [HLT] turned each valve lever into a simple on/off switch by attaching a magnet, with hall-effect sensors on long custom PCBs next to each row of valves. The hall effect sensors are connected to I2C I/O expander ICs which connect to an Arduino Nano, one for each side of the instrument, which sends out MIDI messages via serial. Everything is mounted inside what looks like quite an old instrument with Blu Tack to avoid having to make a lot of permanent modifications.

The bandoneon still functions normally with no permanent modifications, so to play with MIDI-only the bellow is simply not pumped. This means [HLB] can’t modulate the MIDI velocity (loudness) while playing, which he admits is a limitation but better than not playing at all. He does, however, note that he could add a pressure sensor inside the bellow if we wanted to add velocity to the midi output when neighbourliness isn’t a consideration. On the audio output side [HLB] built a small stand-alone synthesizer with an Odroid SBC running FluidSynth and a HiFi shield.

Continue reading “Quieting Down A Bandoneon Accordion With MIDI”

Unique Musical Instrument Defies Description

Since the first of our ancestors discovered that banging a stick on a hollow log makes a jolly sound, we hominids have been finding new and unusual ways to make music. We haven’t come close to tapping out the potential for novel instruments, but then again it’s not every day that we come across a unique instrument and a new sound, as is the case with this string-plucking robot harp.

Named “Greg’s Harp” after builder [Frank Piesik]’s friend [Gregor], this three-stringed instrument almost defies classification. It’s sort of like a harp, but different, and sort of like an electric guitar, but not quite. Each steel string has three different ways to be played: what [Frank] calls “KickUps”, which are solenoids that strike the strings; an “eBow” coil stimulator; and a small motor with plastic plectra that pluck the strings. Each creates a unique sound at the fundamental frequency of the string, while servo-controlled hoops around each string serve as a robotic fretboard to change the notes. Sound is picked up by piezo transducers, and everything is controlled by a pair of Nanos and a Teensy, which takes care of MIDI duties.

Check out the video below and see if you find the sound both familiar and completely new. We’ve been featuring unique instruments builds forever, from not-quite-violins to self-playing kalimbas to the Theremincello, but we still find this one enchanting.

Continue reading “Unique Musical Instrument Defies Description”

Controlling A Building Sized Pipe Organ With Midi

Musical instruments come in all shapes and sizes. For sheer scale and complexity though, you can’t beat pipe organs. [Rob Scallon] visited the Fourth Presbyterian Church in Chicago to look at their massive pipe organ which boasts over 8000 individual pipes. He also discovered that it has a MIDI interface, and off course hooked up his laptop to play the Mario Bros theme song.

This organ is actually the third one the church has had, and was completed in 2016. Its capabilities are impressive, but the engineering side of it is what really blew us away. Every pipe is unique to allow it to recreate the sound of almost an entire orchestra, and the “control station” looks a bit like the cockpit of modern airliner in terms of complexity. The organ covers multiple stories across multiple parts of the church and every single pipe and part needs to be accessible for tuning and maintenance, which is almost a full time job. Check out the first video after the break for a full demonstration and tour of this incredible machine by [John Sherer], the church’s music director and organist.

The second video after the break goes through the process of hooking up a laptop to the organ after getting a technician to completely wire up the MIDI interface. They go full music geek as they marry ancient and modern music technology. [Rob] says it multiple times, and we have to believe that you need to be in the building to truly experience the sound. Let us know in the comments if any readers have heard this organ in person.

Continue reading “Controlling A Building Sized Pipe Organ With Midi”