EU Ecodesign For Smartphones Including Right To Repair Now In Effect

Starting June 20th, any cordless phone, smartphone, or feature phone, as well as tablets (7 – 17.4″ screens) have to meet Ecodesign requirements. In addition there is now mandatory registration with the European Product Registry for Energy Labelling (EPREL). The only exception are phones and tablets with a flexible (rollable) main display, and tablets that do not use a mobile OS, i.e. not Android, iPadOS, etc. These requirements include resistance to drops, scratches and water, as well as batteries that last at least 800 cycles.

What is perhaps most exciting are the requirements that operating system updates must be made available for at least five years from when the product is last on the market, along with spare parts being made available within 5-10 working days for seven years after the product stops being sold. The only big niggle here is that this access only applies to ‘professional repairers’, but at least this should provide independent repair shops with full access to parts and any software tools required.

On the ENERGY label that is generated with the registration, customers can see the rating for each category, including energy efficiency, battery endurance, repairability and IP (water/dust ingress) rating, making comparing devices much easier than before. All of this comes before smartphones and many other devices sold in the EU will have to feature easily removable batteries by 2027, something which may make manufacturers unhappy, but should be a boon to us consumers and tinkerers.

This Week In Security: That Time I Caused A 9.5 CVE, IOS Spyware, And The Day The Internet Went Down

Meshtastic just released an eye-watering 9.5 CVSS CVE, warning about public/private keys being re-used among devices. And I’m the one that wrote the code. Not to mention, I triaged and fixed it. And I’m part of Meshtastic Solutions, the company associated with the project. This is is the story of how we got here, and a bit of perspective.

First things first, what kind of keys are we talking about, and what does Meshtastic use them for? These are X25519 keys, used specifically for encrypting and authenticating Direct Messages (DMs), as well as optionally for authorizing remote administration actions. It is, by the way, this remote administration scenario using a compromised key, that leads to such a high CVSS rating. Before version 2.5 of Meshtastic, the only cryptography in place was simple AES-CTR encryption using shared symmetric keys, still in use for multi-user channels. The problem was that DMs were also encrypted with this channel key, and just sent with the “to” field populated. Anyone with the channel key could read the DM.

I re-worked an old pull request that generated X25519 keys on boot, using the rweather/crypto library. This sentence highlights two separate problems, that both can lead to unintentional key re-use. First, the keys are generated at first boot. I was made painfully aware that this was a weakness, when a user sent an email to the project warning us that he had purchased two devices, and they had matching keys out of the box. When the vendor had manufactured this device, they flashed Meshtastic on one device, let it boot up once, and then use a debugger to copy off a “golden image” of the flash. Then every other device in that particular manufacturing run was flashed with this golden image — containing same private key. sigh

Continue reading “This Week In Security: That Time I Caused A 9.5 CVE, IOS Spyware, And The Day The Internet Went Down”

Space-Based Datacenters Take The Cloud Into Orbit

Where’s the best place for a datacenter? It’s an increasing problem as the AI buildup continues seemingly without pause. It’s not just a problem of NIMBYism; earthly power grids are having trouble coping, to say nothing of the demand for cooling water. Regulators and environmental groups alike are raising alarms about the impact that powering and cooling these massive AI datacenters will have on our planet.

While Sam Altman fantasizes about fusion power, one obvious response to those who say “think about the planet!” is to ask, “Well, what if we don’t put them on the planet?” Just as Gerard O’Neill asked over 50 years ago when our technology was merely industrial, the question remains:

“Is the surface of a planet really the right place for expanding technological civilization?”

O’Neill’s answer was a resounding “No.” The answer has not changed, even though our technology has. Generative AI is the latest and greatest technology on offer, but it turns out it may be the first one to make the productive jump to Earth Orbit. Indeed, it already has, but more on that later, because you’re probably scoffing at such a pie-in-the-sky idea.

There are three things needed for a datacenter: power, cooling, and connectivity. The people at companies like Starcloud, Inc, formally Lumen Orbit, make a good, solid case that all of these can be more easily met in orbit– one that includes hard numbers.

Sure, there’s also more radiation on orbit than here on earth, but our electronics turn out to be a lot more resilient than was once thought, as all the cell-phone cubesats have proven. Starcloud budgets only 1 kg of sheilding per kW of compute power in their whitepaper, as an example. If we can provide power, cooling, and connectivity, the radiation environment won’t be a showstopper.

Continue reading “Space-Based Datacenters Take The Cloud Into Orbit”

Gas Burner Reuses Printer Nozzle For Metalwork

Even if you don’t cast or forge metal yourself, you’re probably aware that you need to get the material very, very hot to make that happen. While some smiths might still stoke coal fires, that’s a minority taste these days; most, like [mikeandmertle] use gas burners to generate the heat. Tired of expensive burners or finicky DIY options [mikeandmertle] built their own Better Burner out of easily-available parts. 

Everything you need to make this burner comes from the hardware store: threaded iron pipes of various sizes, hoses and adapters– except for one key piece: a 3D printer nozzle. The nozzle is used here as the all-important gas jet that introduces flammable gas into the burner’s mixing chamber. A demo video below shows it running with a 0.3mm nozzle, which looks like it is putting out some serious heat, but [mikeandmertle] found that could go out if the breather was opened too wide (allowing too much air in the mixture). Eventually he settled on a 0.4mm nozzle, at least for the LPG that is common down under. If one was to try this with propane, their mileage would differ.

That’s the great thing about using printer nozzles, though: with a tapped M6 hole on the cap of the gas pipe serving as intake, one can quickly and easily swap jets without worrying about re-boring. Printer nozzles are machined to reasonable accuracy and you can get a variety pack with all available sizes (including ones so small you’re probably better off using resin) very cheaply.

These sorts of use-what-you-have-on-hand hacks seem to be [mikeandmertle]’s specialty– we’ve seen their PVC thumb nut and their very simple mostly-wooden wood lathe here before. 

Continue reading “Gas Burner Reuses Printer Nozzle For Metalwork”

This Week In Security: The Localhost Bypass, Reflections, And X

Facebook and Yandex have been caught performing user-hostile tracking. This sort of makes today just another Friday, but this is a bit special. This time, it’s Local Mess. OK, it’s an attack with a dorky name, but very clever. The short explanation is that web sites can open connections to localhost. And on Android, apps can be listening to those ports, allowing web pages to talk to apps.

That may not sound too terrible, but there’s a couple things to be aware of. First, Android (and iOS) apps are sandboxed — intentionally making it difficult for one app to talk to another, except in ways approved by the OS maker. The browser is similarly sandboxed away from the apps. This is a security boundary, but it is especially an important security boundary when the user is in incognito mode.

The tracking Pixel is important to explain here. This is a snippet of code, that puts an invisible image on a website, and as a result allows the tracker to run JavaScript in your browser in the context of that site. Facebook is famous for this, but is not the only advertising service that tracks users in this way. If you’ve searched for an item on one site, and then suddenly been bombarded with ads for that item on other sites, you’ve been tracked by the pixel.

This is most useful when a user is logged in, but on a mobile device, the user is much more likely to be logged in on an app and not the browser. The constant pressure for more and better data led to a novel and completely unethical solution. On Android, applications with permission to access the Internet can listen on localhost (127.0.0.1) on unprivileged ports, those above 1024.

Facebook abused this quirk by opening a WebRTC connection to localhost, to one of the ports the Facebook app was listening on. This triggers an SDP connection to localhost, which starts by sending a STUN packet, a UDP tool for NAT traversal. Packed into that STUN packet is the contents of a Facebook Cookie, which the Facebook app happily forwards up to Facebook. The browser also sends that cookie to Facebook when loading the pixel, and boom Facebook knows what website you’re on. Even if you’re not logged in, or incognito mode is turned on.

Yandex has been doing something similar since 2017, though with a different, simpler mechanism. Rather than call localhost directly, Yandex just sets aside yandexmetrica.com for this purpose, with the domain pointing to 127.0.0.1. This was just used to open an HTTP connection to the native Yandex apps, which passed the data up to Yandex over HTTPS. Meta apps were first seen using this trick in September 2024, though it’s very possible it was in use earlier.

Both companies have ceased since this report was released. What’s interesting is that this is a flagrant violation of GDPR and CCPA, and will likely lead to record-setting fines, at least for Facebook.

Continue reading “This Week In Security: The Localhost Bypass, Reflections, And X”

Texas’ Right To Repair Bill Is A Signature Away From Becoming Law

In what could be a big step forward for consumer rights, the Texas Senate recently unanimously voted to pass HB 2963, which references the “Diagnosis, maintenance, and repair of certain digital electronic equipment”. If signed by the governor, this would make Texas the ninth US state to enact such a law, and the seventh pertaining to consumer electronics. Interestingly, this bill saw anti-parts pairing language added, which is something that got stripped from the Oregon bill.

Much like other Right to Repair bills, HB 2963 would require manufacturers to make spare parts, documentation and repair tools available to both consumers and independent repair shops. If signed, the act would take effect in September of 2026. Included in the bill are provisions to prevent overcharging for the provided parts and documentation.

As for how useful this is going to be for consumers, [Louis Rossmann] had a read of the bill and gave his  typically eloquent thoughts. The tl;dw is that while there is a lot of stuff to like, this bill leaves open potentially massive loopholes (e.g. assemblies vs parts), while also carving out massive exemptions, which leaves owners of game consoles, boats, cars, tractors, home appliances, etc. stranded with no new options.

Continue reading “Texas’ Right To Repair Bill Is A Signature Away From Becoming Law”

Let’s Buy Commodore! Well, Somebody Is.

When a man wearing an Atari T-shirt tells you he’s buying Commodore it sounds like the plot for an improbable 1980s movie in which Nolan Bushnell and Jack Tramiel do battle before a neon synthwave sunset to a pulsating chiptune soundtrack. But here on the screen there’s that guy doing just that, It’s [Retro Recipes], and in the video below he’s assembling a licensing deal for the Commodore brand portfolio from the distant descendant of the Commodore of old.

It’s a fascinating story and we commend him for tracing a path through the mess that unfolded for Commodore in the 1990s. We tried the same research path with a friend a few years ago and ended up with an anonymous Dutch paper company that wouldn’t answer our calls, so we’re impressed. In conjunction with several other players in the Commodore retrocomputing world he’s trying to assemble a favourable percentage deal for manufacturers of new parts, computers, and other goodies, and we’re pleased to see that it’s for the smaller player as much as for the industry giant.

When looking at a story like this though, it’s important not to let your view become clouded by those rose tinted glasses. While it’s great that we’re likely to see a bunch of new Commodore-branded Commodore 64s and parts, there are many pitfalls in taking it beyond that. We’ve seen the Commodore logo on too many regrettable licensed products in the past, and we fear it might be too tempting for it to end up on yet another disappointing all-in-one video game or just another budget PC. If something new comes out under the Commodore brand we’d like it to be really special, exploiting new ground in the way the Amiga did back in the day. We can hope, because the alternative has dragged other famous brands through the mud in recent years.

If you want an insight into the roots of the original Commodore’s demise, have a read of our Hackaday colleague [Bil Herd]’s autobiography.

Continue reading “Let’s Buy Commodore! Well, Somebody Is.”