Lockheed Wants To Build The Next Lunar Lander

The United States is going back to the moon, and it’s happening sooner than you would think. NASA is going back to the moon in 2024, and they might just have the support of Congress to do so.

Getting to the moon is one thing, and since SpaceX launched a car to the asteroid belt, this future of boots on the moon after Apollo seems closer than ever before. But what about landing on the moon? There’s only ever been one Lunar Lander that has taken people down to the moon and brought them back again, and it’s doubtful that design will be used again. Now, Lockheed has their own plan for landing people on the moon, and they might be able to do it by 2024.

Continue reading “Lockheed Wants To Build The Next Lunar Lander”

Making A Three Cent Microcontroller Useful

The Padauk PMS150C is a terrible microcontroller. There are only six pins, there’s only one kiloword of Flash, 64 bytes of RAM, and it doesn’t do multiplication. You can only write code to this chip once, and the IDE uses 8-bit ints. [Anders] got his hands on some of these chips and decided to do something useful with them. It turns out that you can do a lot with minimal hardware, such as driving 300 RGB LEDs with a three cent microcontroller.

There’s some work trying to make an Open Source toolchain for these chips, but [Anders] decided to just go with the manufacturer IDE and programmer. What to do with a three cent microcontroller, though? Obviously something blinky. [Anders] connected this microcontroller to a strip of Neopixels, or WS2812Bs, but instead of driving them by giving each pixel a few bytes of RAM, the entire strip is being bitbanged one bit at a time. It’s some clever code, and even if [Anders] won’t be able to send images to a gigantic graphic display made of Neopixels, it’s still a neat trick.

At three cents and nearly zero associated hardware, this is the cheapest microcontroller we’ve ever seen. Even the minimalist PIC and AVR parts are on the orders of dozens of cents per part, and they still only have the functionality of this three-cent part. The manufacturer’s page has more details on the microcontroller itself including the data sheet, and you can check out the sizzle reel of this project below.

Continue reading “Making A Three Cent Microcontroller Useful”

Scientists Create Speech From Brain Signals

One of the things that makes us human is our ability to communicate. However, a stroke or other medical impairment can take that ability away without warning. Although Stephen Hawking managed to do great things with a computer-aided voice, it took a lot of patience and technology to get there. Composing an e-mail or an utterance for a speech synthesizer using a tongue stick or by blinking can be quite frustrating since most people can only manage about ten words a minute. Conventional speech averages about 150 words per minute. However, scientists recently reported in the journal Nature that they have successfully decoded brain signals into speech directly, which could open up an entirely new world for people who need assistance communicating.

The tech is still only lab-ready, but they claim to be able to produce mostly intelligible sentences using the technique. Previous efforts have only managed to produce single syllables, not entire sentences.

Continue reading “Scientists Create Speech From Brain Signals”

The Galaxy Fold, Or Why Flexible OLED May Not Yet Be Ready For Prime Time

Samsung’s fancy new high-end smartphone with a flexible, foldable OLED display has been failing in worrying numbers for the first reviewers who got their hands on one. Now iFixit has looked into the issue using their considerable amount of smartphone tear-down experience to give their two cents. They base many of their opinions on the photos and findings by the Verge review, who were one of the (un)lucky ones to have their unit die on them.

The Galaxy Fold was supposed to be this regular smartphone sized phone which one can open up fully to reveal a tablet-sized display inside. The use of a flexible OLED display was supposed to create a seamless display without the annoying center line that having two individual displays would produce. Unfortunately it’s this folding feature which produces issues.

As iFixit notes, OLEDs are rather fragile, with their own tear-downs of regular OLED-equipped devices already often resulting in the damaging of the display edges, which spells doom for the internals of them as oxygen and other contaminants can freely enter. This means that maintaining this barrier is essential to keep the display functioning.

This is probably the reason why Samsung chose to install a screen protector on the display, which unfortunately was mistaken for a protective foil as found on many devices. The subsequent removal of this protector by some reviewers and the mechanical stress this caused destroyed some screens. Others had debris trapped in the fold between both halves of the display, which caused visible bumps in the display when opened.

The relatively massive spacing between the hinge and the display seems almost purposefully engineered to allow for the ingress of debris. This combines with the lack of any guiding crease in the center of the display and the semi-random way in which humans open and close the Fold compared to the perfectly repeating motion of the folding robots Samsung used to test the display. It seems that Samsung and others still have some work to do before they can call folding OLED displays ready for production.

Finally, have a look at this video of Lewis from UnboxTherapy pulling a folding robot with opening and closing a Fold one-thousand times:

 

Prusa Launches Their Own 3D Model Repository

If you own a 3D printer, you’ve heard of Thingiverse. The MakerBot-operated site has been the de facto model repository for 3D printable models since the dawn of desktop 3D printing, but over the years it’s fallen into a state of disrepair. Dated and plagued with performance issues, many in the community have been wondering how long MakerBot is still going to pay to keep the lights on. Alternatives have popped up occasionally, but so far none of them have been able to amass a large enough userbase to offer any sort of real competition.

Sorting models by print time and material required.

But that might soon change. [Josef Průša] has announced a revamped community for owners of his 3D printers which includes a brand-new model repository. While clearly geared towards owners of Prusa FDM printers (support for the new SLA printer is coming at a later date), the repository is not exclusive to them. The immense popularity of Prusa’s products, plus the fact that the repository launched with a selection of models created by well known designers, might be enough to finally give Thingiverse a run for its money. Even if it just convinces MakerBot to make some improvements to their own service, it would be a win for the community.

The pessimists out there will say a Prusa-run model database is ultimately not far off from one where MakerBot is pulling the strings; and indeed, a model repository that wasn’t tied to a particular 3D printer manufacturer would be ideal. But given the passion for open development demonstrated by [Josef] and his eponymous company, we’re willing to bet that the site is never going to keep owners of other printers from joining in on the fun.

That being said, knowing that the users of your repository have the same printer (or a variant, at least) as those providing the designs does have its benefits. It allows for some neat tricks like being able to sort designs by their estimated print time, and even offers the ability to upload and download pre-sliced GCode files in place of traditional STLs. In fact, [Josef] boasts that this is the world’s only repository for ready-to-print GCode that you can just drop onto an SD card and print.

Regular Hackaday readers will know that we’ve been rather critical of the decisions made by MakerBot over the last few years, but to be fair we aren’t exactly alone in that respect. The community desperately needs a repository for printable models that’s in somebody else’s hands, and frankly we’re thrilled with the idea it could be [Josef Průša] leading the charge. His printers might not be perfect, and they certainly aren’t cheap, but they definitely don’t fail to impress. Here’s hoping this latest venture will be the same.

Continue reading “Prusa Launches Their Own 3D Model Repository”

Stealing DNA By Phone

Data exfiltration via side channel attacks can be a fascinating topic. It is easy to forget that there are so many different ways that electronic devices affect the physical world other than their intended purpose. And creative security researchers like to play around with these side-effects for ‘fun and profit’.

Engineers at the University of California have devised a way to analyse exactly what a DNA synthesizer is doing by recording the sound that the machine makes with a relatively low-budget microphone, such as the one on a smart phone. The recorded sound is then processed using algorithms trained to discern the different noises that a particular machine makes and translates the audio into the combination of DNA building blocks the synthesizer is generating.

Although they focused on a particular brand of DNA Synthesizers, in which the acoustics allowed them to spy on the building process, others might be vulnerable also.

In the case of the DNA synthesizer, acoustics revealed everything. Noises made by the machine differed depending on which DNA building block—the nucleotides Adenine (A), Guanine (G), Cytosine (C), or Thymine (T)—it was synthesizing. That made it easy for algorithms trained on that machine’s sound signatures to identify which nucleotides were being printed and in what order.

Acoustic snooping is not something new, several interesting techniques have been shown in the past that raise, arguably, more serious security concerns. Back in 2004, a neural network was used to analyse the sound produced by computer keyboards and keypads used on telephones and automated teller machines (ATMs) to recognize the keys being pressed.

You don’t have to rush and sound proof your DIY DNA Synthesizer room just yet as there are probably more practical ways to steal the genome of your alien-cat hybrid, but for multi-million dollar biotech companies with a equally well funded adversaries and a healthy paranoia about industrial espionage, this is an ear-opener.

We written about other data exfiltration methods and side channels and this one, realistic scenario or not, it’s another cool audio snooping proof of concept.

3D Printing A Real Heart

As 3D printing becomes more and more used in a wide range of fields, medical science is not left behind. From the more standard uses such as printing medical equipment and prosthetics to more advanced uses like printing cartilages and bones, the success of 3D printing technologies in the medical field is rapidly growing.

One of the last breakthrough is the world’s first 3D vascularised engineered heart using the patient’s own cells and biological materials. Until now, scientists have only been successful in printing only simple tissues without blood vessels. Researchers from Tel Aviv University used the fatty tissue from patients to separate the cellular and acellular materials and reprogrammed the cells become pluripotent stem cells. The extracellular matrix (ECM) was processed into a personalized hydrogel that served as the basis from the print.

This heart is made from human cells and patient-specific biological materials. In our process these materials serve as the bioinks, substances made of sugars and proteins that can be used for 3D printing of complex tissue models… At this stage, our 3D heart is small, the size of a rabbit’s heart, but larger human hearts require the same technology.

After being mixed with the hydrogel, the cells were efficiently differentiated to cardiac or endothelial cells to create patient-specific, immune-compatible cardiac patches with blood vessels and, subsequently, an entire heart that completely matches the immunological, cellular, biochemical and anatomical properties of the patient. The difficulty of printing full-blown organs were being tackled for a long time and we already talked about it in the past.

The development of this technology may completely solve both the problem of organ compatibility and organ rejection.